Log in

Implementation of a roughness element to trip transition in large-eddy simulation

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical implementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer configuration, with Reynolds number Rex=1.3×106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nicoud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Lévêque et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α :

power-law factor

β :

minus power-law exponent

χ :

numerical convergence monitor

Δx +, Δy +, Δz + :

cell-dimensions at wall, in wall units (streamwise, wall-normal, spanwise)

δ :

boundary-layer thickness

δ̣ :

displacement thickness

ɛ 4 :

artificial viscosity coefficient

µ:

dynamic viscosity

θ :

momentum thickness

ρ :

density

a :

contravariant vector

C D :

drag coefficient

C f :

friction coefficient

c :

speed of sound

h:

cell volume

LES :

large-eddy simulation

L x , L y , L z :

minimum domain dimensions

l x , l y :

step dimensions (length and height)

RANS :

Reynolds-averaged Navier-Stokes

Re x :

Reynolds number (based on axial distance)

T:

static temperature

t:

time

t+ :

normalized time

U:

mean streamwise velocity

u :

velocity vector

u, v, w:

velocity components (eq. u x , u y , u z )

u w :

friction velocity

x, y, z:

coordinates (streamwise, wall-normal and spanwise)

x trip :

trip abscissa

∞:

infinity index: inflow characteristics

—:

overline: mean

′:

prime: standard deviation

References

  1. Schlichting, H., Boundary-Layer Theory. 7th edition, McGraw-Hill, New York (1979).

    MATH  Google Scholar 

  2. Cliquet, J., Houdeville, R., Arnal, D., “Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations”, AIAA Journal, vol. 46, no5, pp. 1182–1190 (2008).

    Article  ADS  Google Scholar 

  3. Sagaut, P., Large eddy simulation for incompressible flows, Springer, New York (1998).

    Google Scholar 

  4. D. You, M. Wang, P. Moin, R. Mittal, “Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow”, Journal of Fluid Mechanics, vol. 586, p. 177–204, 2007.

    Article  ADS  MATH  Google Scholar 

  5. F. Ducros, P. Comte, M. Lesieur, “Large-eddy simulation of transition to turbulence in a boundary layer develo** spatially over a flat plate”, Journal of Fluid Mechanics, vol. 326, p. 1–36, 1996.

    Article  ADS  MATH  Google Scholar 

  6. J. Boudet, J. Caro, L. Shao, E. Lévêque, “Numerical studies towards practical large-eddy simulation”, Journal of Thermal Science, vol. 16, no4, p. 328–336, 2007.

    Article  ADS  Google Scholar 

  7. F. Nicoud, F. Ducros, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor”, Flow, Turbulence and Combustion, vol. 62, no3, p. 183–200, Sept. 1999.

    Article  MATH  Google Scholar 

  8. E. Lévêque, F. Toschi, L. Shao, J.-P. Bertoglio, “Shearimproved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows”, Journal of Fluid Mechanics, vol. 570, p. 491–502, 2007.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. A. Cahuzac, J. Boudet, P. Borgnat, E. Lévêque, “Smoothing algorithms for mean-flow extraction in large-eddy simulation of complex turbulent flows”, Physics of fluids, vol. 22, no12, 2010.

    Google Scholar 

  10. A. Jameson, “Transonic airfoil calculations using the Euler equations”, in Numerical methods in aeronautical fluid dynamics, Vol.1, Academic Press, New York, p. 289–308, 1982.

    Google Scholar 

  11. J. Cousteix, Turbulence et couche limite. Cepadues editions, Toulouse, 1989.

    Google Scholar 

  12. H. L. Dryden, “Transition from laminar to turbulent flow”, in Turbulent Flows and Heat Transfer, Princeton University Press: Princeton, New Jersey, C. C. Lin, 1959.

    Google Scholar 

  13. M. P. Simens, J. Jimenez, S. Hoyas, Y. Mizuno, “A high-resolution code for turbulent boundary layers”, Journal of Computational Physics, vol. 228, no11, 2009.

    Google Scholar 

  14. J. Jimenez, S. Hoyas, M. P. Simens, Y. Mizuno, “Turbulent boundary layers and channels at moderate Reynolds numbers”, Journal of Fluid Mechanics, vol. 657, 2010.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudet, J., Monier, J.F. & Gao, F. Implementation of a roughness element to trip transition in large-eddy simulation. J. Therm. Sci. 24, 30–36 (2015). https://doi.org/10.1007/s11630-015-0752-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-015-0752-8

Keywords

Navigation