Log in

Homogenization of a Large Eddy Simulation Model for Turbulent Fluid Motion Near a Rough Wall

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the numerical simulation of a turbulent viscous flow in the vicinity of a periodic rough wall. To this aim, we consider a large eddy simulation (LES) model, and perform its asymptotic analysis, letting the period \(\varepsilon \) of the roughness tend to zero. Relying on an homogenization method closely related to the two-scale convergence method (Allaire in SIAM J Math Anal 23(6):1482–1518, 1992; Nguetseng in SIAM J Math Anal 20(3):608–623, 1989), we exhibit a critical scaling associated with parameter \(\lambda :=\lim _{\varepsilon \rightarrow 0}{a_\varepsilon }/{\varepsilon ^{5/3}}\), where \(a_\varepsilon \) stands for the amplitude of the roughness. In the critical regime \(0<\lambda <\infty \), the roughness effect is described by an additional, nonlinear friction term, that depends locally on the solution to a nonlinear auxiliary problem of boundary layer type. In the particular case of riblets, which is of major practical interest, we show that the directional invariance of the geometry results in a simplified expression of this extra term, and we propose a numerical method to simulate the homogenized LES model, based on that observation. Finally, we study the influence of parameter \(\lambda \) on the flow approximated by the homogenized model, using different commonly used riblet shapes. Our simulations demonstrate that the extra friction term can be handled numerically, and may have an important influence on the results of LES in presence of roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, N.A., Stolz, S.: A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178(2), 391–426 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  3. Amirat, Y., Simon, J.: Riblets and drag minimization. Contemp. Math. 209, 9–17 (1997)

    Article  MathSciNet  Google Scholar 

  4. Arbogast, T., Douglas Jr., J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

    Article  MathSciNet  Google Scholar 

  5. Bagwell, T.G.: Stochastic estimation of near wall closure in turbulence models. Ph.D. thesis, University of Illinois at Urbana-Champaign (1994)

  6. Barenblatt, G.I., Chorin, A.J.: New perspectives in turbulence: scaling laws, asymptotics, and intermittency. SIAM Rev. 40, 265–291 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. Basson, A., Gérard-Varet, D.: Wall laws for fluid flows at a boundary with random roughness. Commun. Pure Appl. Math. 61(7), 941–987 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bechert, D., Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206(1), 105–129 (1989)

    Article  ADS  Google Scholar 

  9. Bechert, D.W., Hoppe, G., van der Hoeven, JGTh, Makris, R.: The Berlin oil channel for drag reduction research. Exp. Fluids 12(4), 251–260 (1992)

    Article  Google Scholar 

  10. Berselli, L.C., Galdi, G.P., Iliescu, T., Layton, W.J.: Mathematical analysis for the rational large eddy simulation model. Math. Models Methods Appl. Sci. 12(08), 1131–1152 (2002)

    Article  MathSciNet  Google Scholar 

  11. Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Boughanim, F., Boukrouche, M., Smaoui, H.: Asymptotic behavior of a non-Newtonian flow with stick-slip condition. 2004-Fez Conference on Differential Equations and Mechanics. Electron. J. Diff. Eqns. Conf., vol. 11, pp. 71–80 (2004)

  13. Brézis, H.: Analyse fonctionnelle: théorie et applications. Collection Mathématiques appliquées pour la maîtrise, Masson, Paris, New York, Barcelone (1983)

  14. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  15. Bucur, D., Feireisl, E., Nečasová, Š.: On the asymptotic limit of flows past a ribbed boundary. J. Math. Fluid Mech. 10(4), 554–568 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Bucur, D., Feireisl, E., Nečasová, Š.: Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197(1), 117–138 (2010)

    Article  MathSciNet  Google Scholar 

  17. Casado-Díaz, J.: Exponential decay for the solutions of nonlinear elliptic systems posed in unbounded cylinders. J. Math. Anal. Appl. 328(1), 151–169 (2007)

    Article  MathSciNet  Google Scholar 

  18. Casado-Díaz, J., Fernández-Cara, E., Simon, J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189(2), 526–537 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. Casado-Díaz, J., Luna-Laynez, M., Suárez-Grau, F.J.: Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall. Math. Models Methods Appl. Sci. 20(01), 121–156 (2010)

    Article  MathSciNet  Google Scholar 

  20. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R. Acad. Sci. Paris 335(1), 99–104 (2002)

    Article  MathSciNet  Google Scholar 

  21. Coletti, P.: Analytical and numerical analysis of KE and large eddy simulation turbulence models. Ph.D. thesis, Dipartimento di Matematica, Università di Trento (1998)

  22. Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 368(1933), 5737–5737 (2010)

    Article  ADS  Google Scholar 

  23. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

    Article  ADS  Google Scholar 

  24. Dritselis, C.D.: Large eddy simulation of turbulent channel flow with transverse roughness elements on one wall. Int. J. Heat Fluid Flow 50, 225–239 (2014)

    Article  Google Scholar 

  25. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations : Steady-State Problems. Springer Monographs in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  26. Galdi, G.P., Layton, W.J.: Approximation of the larger eddies in fluid motions II: a model for space-filtered flow. Math. Models Methods Appl. Sci. 10(03), 343–350 (2000)

    Article  MathSciNet  Google Scholar 

  27. García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Philos. Trans. R. Soc. A 369, 1412–1427 (2011)

    Article  ADS  Google Scholar 

  28. Gérard-Varet, D.: The Navier wall law at a boundary with random roughness. Commun. Math. Phys. 286(1), 81–110 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. Gérard-Varet, D., Wróblewska-Kamińska, A.: Boundary layer for a non-Newtonian flow over a rough surface. SIAM J. Math. Anal. 48(5), 3123–3147 (2016)

    Article  MathSciNet  Google Scholar 

  30. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, 1st edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  31. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  32. Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  33. Jäger, W., Mikelić, A.: Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232(3), 429–455 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  34. Jiménez, J., García-Mayoral, R.: Drag reduction by riblets. Philos. Trans. R. Soc. A 369, 1412–1427 (2011)

    Article  ADS  Google Scholar 

  35. Ladyzhenskaya, O.A., Kiselev, A.A.: On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 21, 655–680 (1957)

    MathSciNet  Google Scholar 

  36. Lauga, E., Brenner, M., Stone, H.: Microfluidics: The No-Slip Boundary Condition, pp. 1219–1240. Springer, Berlin (2007)

    Google Scholar 

  37. Lee, S.-J., Lee, S.-H.: Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids 30(2), 153–166 (2001)

    Article  Google Scholar 

  38. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    Article  MathSciNet  Google Scholar 

  39. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  40. Maxwell, J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    Article  ADS  Google Scholar 

  41. McDonough, J.M.: Introductory Lectures on Turbulence: Physics, Mathematics and Modeling. In: Mechanical Engineering Textbook Gallery. 2. https://uknowledge.uky.edu/me_textbooks/2 (2007)

  42. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Article  MathSciNet  Google Scholar 

  43. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  44. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2006)

    MATH  Google Scholar 

  45. Serrin, J.: Mathematical Principles of Classical Fluid Mechanics. Springer, Berlin (1959)

    Book  Google Scholar 

  46. Smagorinsky, J.S.: General circulation experiments with the primitive equations. Mon. Weather Rev. 164, 91–99 (1963)

    Google Scholar 

  47. Suárez-Grau, F.J.: Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition. ZAMM J. Appl. Math. Mech. 95(5), 527–548 (2015)

    Article  MathSciNet  Google Scholar 

  48. Tartar, L.: An Introduction to Navier–Stokes Equation and Oceanography, Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2006)

    Book  Google Scholar 

  49. Viswanath, P.R.: Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38, 571–600 (2002)

    Article  MathSciNet  Google Scholar 

  50. Volker, J.: Large Eddy Simulation of Turbulent Incompressible Flows, Lecture Notes in Computational Science and Engineering, vol. 34. Springer, Berlin (2004)

    Google Scholar 

Download references

Acknowledgements

F.J. Suárez-Grau has been supported by Ministerio de Economía y Competitividad (Spain), Proyecto Excelencia MTM2014-53309-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Bonnivard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Feireisl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnivard, M., Suárez-Grau, F.J. Homogenization of a Large Eddy Simulation Model for Turbulent Fluid Motion Near a Rough Wall. J. Math. Fluid Mech. 20, 1771–1813 (2018). https://doi.org/10.1007/s00021-018-0389-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0389-y

Keywords

Mathematics Subject Classification

Navigation