Log in

Cr3+ and Co2+ do** modification on electrochemical performance of LiNi0.5Mn1.5O4 for Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

It is exactly the high potential and high energy density that makes the LiNi0.5Mn1.5O4 (LNMO) an attractive material for lithium-ion battery cathode. However, the poor cycle performance of LNMO caused by John-Teller effect during the Li+ ion insertion/desertion process has been a hindrance for its practical application. Herein, the influence of M-doped (M= Cr and Co) on structure, morphology, and electrochemical performances of LiMyNi0.5-yNi1.5O4 spinel materials are deeply investigated to improve the structural stability and cycling ability. The results reveal that the cell volume and of LiNi0.5Mn1.5O4 are decreased with Cr3+ and Co2+ do**; the stability of structure and electrical conductivity is correspondingly improved. The state density diagrams demonstrate that Cr3+ and Co2+ cationic do** have clearly enhanced the interaction between oxygen and transition metals (Ni and Mn) and improved the transition capacity of Li+. The initial discharge specific capacities of LiCo0.12Ni0.38Mn1.5O4 and LiCr0.12Ni0.38Mn1.5O4 samples are 113.3 mAh·g−1 and 107.7 mAh·g−1 respectively at a high rate of 0.5 C, which are higher than that of pure LiNi0.5Mn1.5O4. Additionally, the capacity retention rates of 87.2% and 63.97% come through respectively after 50 cycles while only 59.8% for pure LNMO. The rate of LiCo0.12Ni0.38Mn1.5O4 exhibits a better stability than LiCr0.12Ni0.38Mn1.5O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Pu YJ, Ma ZS, Pan Y, Sun CQ (2016) Interfacial adhesion energy of lithium-ion battery electrodes. Extreme Mech Lett 9:226–236. https://doi.org/10.1016/j.eml.2016.08.002

    Article  CAS  Google Scholar 

  2. Meng FB, Guo HJ, Wang ZX, Wang JX, Yan GC, Wu XW, Li XH, Zhou LJ (2019) The influences of SO42- from electrolytic manganese dioxide precursor on the electrochemical properties of Li-rich Mn-based material for Li-ion batteries. IONICS 25:2585–2594. https://doi.org/10.1007/s11581-018-2796-8

    Article  CAS  Google Scholar 

  3. Jarvis KA, Deng ZQ, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution Chem Mater 23:3614–3621. https://doi.org/10.1021/cm200831c

    Article  CAS  Google Scholar 

  4. Wang CP, Ma ZS, Wang Y, Lu CS (2016) Failure prediction of high-capacity electrode materials in lithium-ion batteries. J Electrochem Soc 163:A1157–A1163. https://doi.org/10.1016/j.electacta.2016.07.039

    Article  CAS  Google Scholar 

  5. Wei AJ, Li W, Chang Q, Bai X, He R, Zhang LH, Liu ZF, Wang YJ (2019) Effect of Mg2+/F- co-do** on electrochemical performance of LiNi0.5Mn1.5O4 for 5 V lithium-ion batteries. Electrochim Acta 323:134692. https://doi.org/10.1016/j.electacta.2019.134692

    Article  CAS  Google Scholar 

  6. Chang LG, Cao SY, Luo SH, Zhang FS, Li K (2021) Study on synthesis of spinel LiNi0.5Mn1.5O4 cathode material and its electrochemical properties by two-stage roasting. Int J Energy Res 45:8932–8941. https://doi.org/10.1002/er.6426

    Article  CAS  Google Scholar 

  7. Uzun D (2015) Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium-ion battery. Solid State Ionics 281:73–81. https://doi.org/10.1016/j.ssi.2015.09.008

    Article  CAS  Google Scholar 

  8. Gao C, Liu HP, Bi SF, Li HL, Ma CS (2020) Investigation the improvement of high voltage spinel LiNi0.5Mn1.5O4 cathode material by anneal process for lithium-ion batteries. Green Energy Environ 6:114–123. https://doi.org/10.1016/j.gee.2020.03.001

    Article  CAS  Google Scholar 

  9. Chen YY, Sun Y, Huang XJ (2016) Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: the role of oxygen vacancies and cation do**. Comp Mater Sci 115:109–116. https://doi.org/10.1016/j.commatsci.2016.01.005

    Article  CAS  Google Scholar 

  10. Rana J, Glatthaar S, Gesswein H, Sharma N, Binder JR, Chernikov R, Schumacher G, Banhart J (2014) Local structural changes in LiMn1.5Ni0.5O4 spinel cathode material for lithium-ion batteries. J Power Sources 255:439–449. https://doi.org/10.1016/j.jpowsour.2014.01.037

    Article  CAS  Google Scholar 

  11. Kunduraci M, Al-Sharab JF, Amatucci GG (2007) High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Amatucc Chem Mater 18:3585–3592. https://doi.org/10.1021/cm060729s

    Article  CAS  Google Scholar 

  12. Wu W, Qin X, Guo JL, Wang JF, Yang HY, Wang L (2017) Influence of cerium do** on structure and electrochemical properties of LiNi(0.5)Mn(1.5)O4 cathode materials. Rare Earths 35:887–895. https://doi.org/10.1016/S1002-0721(17)60991-8

    Article  CAS  Google Scholar 

  13. Sanad MMS, Abdellatif HA, Elnaggar EM, El‑Kady GM, Rashad MM (2019) Understanding structural, optical, magnetic and electrical performances of Fe- or Co-substituted spinel LiMn1.5Ni0.5O4 cathode materials. Appl Phys.A: Mater Sci Process 125:139. https://doi.org/10.1007/s00339-019-2445-8

  14. Kiziltas-Yavuz N, Bhaskar A, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium do**. J Power Sources 267:533–541. https://doi.org/10.1016/j.jpowsour.2014.05.110

    Article  CAS  Google Scholar 

  15. Liu WJ, Shi Q, Qu QT, Gao T, Zhu GB, Shao J, Zheng HH (2017) Improved Li-ion diffusion and stability of LiNi0.5Mn1.5O4 cathode through in-situ co-do** of dual-metal cations and incorporation of superionic conductor. J Mater Chem A 5:145–154. https://doi.org/10.1039/c6ta08891k

    Article  CAS  Google Scholar 

  16. Kiziltas-Yavuz N, Yavuz M, Indris S, Bramnik NN, Knapp M, Dolotko O, Das B, Ehrenberg H, Bhaskar A (2016) Enhancement of electrochemical performance by simultaneous substitution of Ni and Mn with Fe in Ni-Mn spinel cathodes for Li-ion batteries. J Power Sources 327:507–518. https://doi.org/10.1016/j.jpowsour.2016.07.047

    Article  CAS  Google Scholar 

  17. Li J, Li SF, Xu SJ, Huang S, Zhu JX (2017) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials with Cr3+ and F- composite do** for lithium-ion batteries. Nanoscale Res Lett 12:414. https://doi.org/10.1186/s11671-017-2172-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo LF, **e YL (2022) Na-doped LiNi1/3Co1/3Mn1/3O2 with enhanced rate performance as a cathode for Li-ion batteries. IONICS 28:2117–2123. https://doi.org/10.1007/s11581-022-04515-5

    Article  CAS  Google Scholar 

  19. Mao J, Dai KH, Xuan MJ, Shao GS, Qiao RM, Yang WL, Battaglia VS, Liu G (2016) Effect of chromium and niobium do** on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl Mater Interfaces 8:9116–9124. https://doi.org/10.1021/acsami.6b00877

    Article  CAS  PubMed  Google Scholar 

  20. Zhang SM, Tang T, Ma ZH, Gu HT, Du WB, Gao MX, Liu YF, Jian DC, Pan H (2018) Tuning Li2MO3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode. J Power Sources 380:1–11. https://doi.org/10.1016/j.jpowsour.2018.01.045

    Article  CAS  Google Scholar 

  21. Gajraj V, Azmi R, Darma MSD, Indris S, Ehrenberg H, Mariappan CR (2021) Correlation between structural, electrical and electrochemical performance of Zn doped high voltage spinel LiNi0.5-xZnxMn1.5O4 porous microspheres as a cathode material for Li-Ion batteries. Ceram Int 47:35275–35286. https://doi.org/10.1016/j.ceramint.2021.09.070

    Article  CAS  Google Scholar 

  22. Liu MH, Huang HT, Lin CM, Chen JM, Liao SC (2014) Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries. Electrochim Acta 120:133–139. https://doi.org/10.1016/j.electacta.2013.12.065

    Article  CAS  Google Scholar 

  23. Chen MZ, Hu Z, Wu ZG, Hua WB, Ozawa K, Gu QF, Kang YM, Guo XD, Chou SL, Dou SX (2016) Understanding performance differences from various synthesis methods: a case study of spinel LiCr0.2Ni0.4Mn1.4O4 cathode material. ACS Appl. Mater. Interfaces 8:26051–26057. https://doi.org/10.1021/acsami.6b08327

    Article  CAS  PubMed  Google Scholar 

  24. Mao J, Ma MZ, Liu PP, Hu JH, Shao GS, Battaglia V, Dai KH, Liu G (2016) The effect of cobalt do** on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. Solid State Ionics 292:70–74. https://doi.org/10.1016/j.ssi.2016.05.008

    Article  CAS  Google Scholar 

  25. Liu SS, Zhao HY, Tan M, Hu YZ, Shu XH, Zhang ML, Chen B, Liu XQ (2017) Er-doped LiNi0.5Mn1.5O4 cathode material with enhanced cycling stability for lithium-ion batteries. Mater 10:859. https://doi.org/10.3390/ma10080859

    Article  CAS  Google Scholar 

  26. Arunkumar TA, Manthiram A (2005) Influence of chromium do** on the electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.5O4. Electrochim Acta 50:5568–5572. https://doi.org/10.1016/j.electacta.2005.03.033

    Article  CAS  Google Scholar 

  27. Nie X, Zhong BH, Chen MZ, Yin K, Li L, Liu H, Guo XD (2013) Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochim Acta 97:184–191. https://doi.org/10.1016/j.electacta.2013.01.124

    Article  CAS  Google Scholar 

  28. Gong JJ, Yan SP, Lang YQ, Zhang Y, Fu SX, Guo JL, Wang L, Liang GC (2021) Effect of Cr3+ do** on morphology evolution and electrochemical performance of LiNi0.5Mn1.5O4 material for Li-ion battery. J Alloys Compd 859:157885. https://doi.org/10.1016/j.jallcom.2020.157885

    Article  CAS  Google Scholar 

  29. Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393. https://doi.org/10.1016/j.jpowsour.2011.12.037

    Article  CAS  Google Scholar 

  30. Wang H, Li J, Yang S, Zhang B, ** on crystal structure and electrochemical performances of LiNi0.5Mn1.5O4. Mater Technol 30:A75–A78. https://doi.org/10.1179/17535557A15Y.000000008

    Article  CAS  Google Scholar 

  31. Kim MC, Lee YW, Pham TK, Sohn JI, Park KW (2020) Chemical valence electron-engineered LiNi0.4Mn1.5MtO.4 (Mt = Co and Fe) cathode materials with high-performance electrochemical properties. Appl Surf Sci 504:144514. https://doi.org/10.1016/j.apsusc.2019.144514

    Article  CAS  Google Scholar 

  32. Hu XH, Ai XP, Yang HX, Li SX (1998) A study of LiMn2O4 synthesized from Li2CO3 and MnCO2. J Power Sources 74:240–243. https://doi.org/10.1016/S0378-7753(98)00049-4

    Article  CAS  Google Scholar 

  33. Berbenni V, Marini A (2003) Solid state synthesis of lithiated manganese oxides from mechanically activated Li2CO3-Mn3O4 mixtures. J Anal Appl Pyrolysis 70:437–456. https://doi.org/10.1016/S0165-2370(03)00003-2

    Article  CAS  Google Scholar 

  34. Rim H, Park HR, Song MY (2013) Synthesis of LiNi0.9Co0.1O2 from Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4 and their electrochemical properties. Ceram Int 39:7297–7303. https://doi.org/10.1016/j.ceramint.2013.02.068

    Article  CAS  Google Scholar 

  35. Pasero D, Reeves N, Pralong V, West AR (2008) Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.5O4−δ. J Electrochem Soc 155:A282–A291. https://doi.org/10.1149/1.2832650

    Article  CAS  Google Scholar 

  36. Yang YX, Yang HL, Cao HB, Wang ZH, Liu CW, Sun Y, Zhao H, Zhang Y, Sun Z (2019) Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent LiNi0.5Mn03Co02O2 batteries. J Cleaner Prod 236:117576. https://doi.org/10.1016/j.jclepro.2019.07.051.

  37. Tang YQ, Chen SJ (2021) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum. IONICS 27:935–948. https://doi.org/10.1007/s11581-020-03888-9

    Article  CAS  Google Scholar 

  38. Huang ZD, Zhang K, Zhang TT, Liu RQ, Lin XJ, Li Y, Masese T, Liu XM, **M Feng, Ma YW (2016) High rate and thermally stable Mn-rich concentration-gradient layered oxide microsphere cathodes for lithium-ion batteries. Energy Storage Mater 5:205–213. https://doi.org/10.1016/j.ensm.2016.08.001

    Article  Google Scholar 

  39. Michael M, Thackeray, (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71. https://doi.org/10.1016/S0079-6786(97)81003-5

    Article  Google Scholar 

  40. Liu YH, Tsai TY (2021) Improving electrochemical performance of lithium ion batteries using a binder-free carbon fiber-based LiNi0.5(1-x)Mn1.5(1-x/3)CrxO4 cathode with a conventional electrolyte. J Power Sources 484:229262. https://doi.org/10.1016/j.jpowsour.2020.229262.

  41. Chladil L, Kunický D, Kazda T, Vanýsek P, Cech O, Baca P (2021) In-situ XRD study of a chromium doped LiNi0.5Mn1.5O4 cathode for Li-ion battery. J Energy Storage 41:102907. https://doi.org/10.1016/j.est.2021.102907

    Article  Google Scholar 

  42. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  43. Guo J, Li YJ, Chen YX, Deng SY, Zhu J, Wang SL, Zhang JP, Chang SH, Zhang DW, ** XM (2019) Stable interface Co3O4-coated LiNi0.5Mn1.5O4 for lithium-ion batteries. J Alloys Compd 811:152031. https://doi.org/10.1016/j.jallcom.2019.152031

    Article  CAS  Google Scholar 

  44. Zhang PP, Wang Y, Lei WX, Zou YL, Jiang WJ, Ma ZS, Lu CH (2019) Enhancement effects of Co do** on interfacial properties of Sn electrode-collector: a first-principles study. ACS Appl Mater Inter 11:24648–24658. https://doi.org/10.1021/acsami.9b01418

    Article  CAS  Google Scholar 

  45. **ao J, Chen XL, Sushko PV, Sushko ML, Kovarik L, Feng JJ, Deng ZQ, Zheng JM, Graff GL, Nie ZM, Choi DW, Liu J, Zhang JG, Whittingharm MS (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24:2109–2116. https://doi.org/10.1002/adma.201104767

    Article  CAS  PubMed  Google Scholar 

  46. He T, Chen L, Su YF, Lu Y, Bao LY, Chen G, Zhang QY, Chen S, Wu F (2019) The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-rich cathode materials. J Power Sources 441:227195. https://doi.org/10.1016/j.jpowsour.2019.227195

    Article  CAS  Google Scholar 

  47. Yang H, Savory CN, Morgan BJ, Scanlon DO, Skelton JM, Walsh A (2020) Chemical trends in the lattice thermal conductivity of Li(Ni, Mn, Co)O2 (NMC) Battery Cathodes. Chem Mater 32:7542–7550. https://doi.org/10.1021/acs.chemmater.0c02908

    Article  CAS  Google Scholar 

  48. Fei L, Ma JN, Lin JY, Zhang XH, Yu H, Yang GC (2020) Exploring the origin of electrochemical performance of Cr-doped LiNi0.5Mn1.5O4. Phys Chem Chem Phys 22:3831–3838. https://doi.org/10.1039/c9cp06545h

    Article  CAS  Google Scholar 

  49. Luo Y, Lu TL, Zhang YX, Yan LQ, Mao SS, ** with improved high-rate cyclability. J Alloys Compd 703:289–297. https://doi.org/10.1016/j.jallcom.2017.01.248

    Article  CAS  Google Scholar 

  50. Zhong GB, Wang YY, Zhao XJ, Wang QS, Yu Y, Chen CH (2012) Structural, electrochemical and thermal stability investigations on LiNi0.5-xAl2xMn1.5-xO4 (0<=2x<=1.0) as 5 V cathode materials. J Power Sources 216:368–375. https://doi.org/10.1016/j.jpowsour.2012.05.108

    Article  CAS  Google Scholar 

  51. Chu CT, Mondal A, Kosova NV, Lin JY (2020) Improved high-temperature cycliability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries. Appl Surf Sci 530:147169. https://doi.org/10.1016/j.apsusc.2020.147169

    Article  CAS  Google Scholar 

  52. Qiu XY, Zhuang QC, Zhang QQ, Cao R, Qiang YH, Ying PZ, Sun SG (2013) Reprint of ‘“Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion battery by electrochemical impedance spectroscopy.”’ J Electroanal Chem 688:393–402. https://doi.org/10.1016/j.jelechem.2013.02.009

    Article  CAS  Google Scholar 

  53. ** GC, Jiao X, Peng QM, Zeng TB (2021) Anchored CoCO3 on peeled graphite sheets toward high-capacity lithium-ion battery anode. J Mater Sci 56:10510–10522. https://doi.org/10.1007/s10853-021-05933-y

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Key R&D Plan of Shaanxi Province-General Industrial Project (No.2022GY-160), the National Natural Science Foundation of China (No.51504181), the Nature Science Foundational of Shaanxi Province (No. 2020JQ-679), Key Laboratory Project of Education Department of Shaanxi Province (No.20JS064), the National Innovation and Entrepreneurship Training program for college students in 2021, and the third high-level innovative and entrepreneurial talents (team) project of Sanmenxia city (No. 2020709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaru Cui or Qian Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 767 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Cui, Y., Li, Q. et al. Cr3+ and Co2+ do** modification on electrochemical performance of LiNi0.5Mn1.5O4 for Li-ion battery. Ionics 29, 973–982 (2023). https://doi.org/10.1007/s11581-023-04886-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04886-3

Keywords

Navigation