Log in

Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As one of the most promising for the next-generation cathode material, the lithium-rich cathode is mainly suffering from severe capacity fading and voltage drop. Herein, the Li1.2Mn0.54Ni0.13Co0.13O2 cathode material co-modified by lanthanum and aluminum, i.e., 3LaAlO3:Al2O3, has been successfully achieved by sol-gel method. The Li1.2Mn0.54Ni0.13Co0.13O2 cathode with 3 wt% of 3LaAlO3:Al2O3 (LR-NMC@0.03) delivers an initial discharge capacity of 242.3 mAh g−1 at 1.0C with a corresponding capacity retention of 91.7% after 200 cycles, far higher than those (217.7 mAh g−1 and 72.8%) of the pristine sample. What is more important is that the capacity retention can increase from 42.9 to 83.5% even at 5.0C after 200 cycles. Specially, the voltage drop has been relieved by the 3LaAlO3:Al2O3 coating layer. The 3LaAlO3:Al2O3 applied in Li-rich cathode material has been demonstrated to be a feasible surface modification method to construct high-energy and high-power Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lu L, Han X, Li J, Hu J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  2. Han X, Zhang ZQ, Chen SY, Yang Y (2020) Low temperature growth of graphitic carbon on porous silicon for high-capacity lithium energy storage. J Power Sources 463:228245

    Article  CAS  Google Scholar 

  3. Wakihara M (2001) Recent developments in Lithium ion batteries. Mater Sci Eng R 33:109–134

    Article  Google Scholar 

  4. Yazami R, Lebrun N, Bonneau M, Molteni M (1995) High performance LiCoO2 positive electrode material. J Power Sources 54:389–392

    Article  CAS  Google Scholar 

  5. Hosono E, Kudo T, Honma I, Matsuda H, Zhou HS (2009) Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett 3:1045–1051

    Article  Google Scholar 

  6. Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  7. Nie Y, **ao W, Miao C, Xu MB, Wang CJ (2020) Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim Acta 334:135654

    Article  CAS  Google Scholar 

  8. Kou ZY, Miao C, Mei P, Zhang Y, Yan XM, Jiang Y, **ao W (2020) Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH values. Ceram Int 46:9629–9636

    Article  CAS  Google Scholar 

  9. Nie Y, **ao W, Miao C, Fang R, Kou ZY, Wang D, Xu MB, Wang CJ (2020) Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in-situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochim Acta 353:136477

    Article  CAS  Google Scholar 

  10. Eum D, Kim B, Kim SJ, Park H, Wu JP, Cho SP, Yoon G, Lee MH, Jung SK, Yang W, Seong WM, Ku K, Tamwattana O, Park SK, Hwang I, Kang K (2020) Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater 19:419–427

    Article  CAS  PubMed  Google Scholar 

  11. Wang RH, Sun YL, Yang KS, Zheng JC, Li Y, Qian ZF, He ZJ, Zhong SK (2020) One-time sintering process to modify xLi(2)MnO(3) (1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. J Energy Chem 50:271–279

    Article  Google Scholar 

  12. Zhao EY, Zhang MH, Wang XL, Hu EY, Liu J, Yu X, Olguin M, Wynn TA, Meng YS, Page K, Wang F, Li H, Yang XQ, Huang X, Chen L (2020) Local structure adaptability through multi cations for oxygen redox accommodation in Li-rich layered oxides. Energy Storage Mater 24:384–393

    Article  Google Scholar 

  13. Li B, Yan H, Ma J, Yu P, **a D, Huang W, Chu W, Wu Z (2014) Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv Funct Mater 24:5112–5118

    Article  CAS  Google Scholar 

  14. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al do** for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6:1502398

    Article  Google Scholar 

  15. Iddir H, Benedek R (2014) First-principles analysis of phase stability in layered–layered composite cathodes for lithium-ion batteries. Chem Mater 26:2407–2413

    Article  CAS  Google Scholar 

  16. Wang G, Yi L, Yu R, Wang X, Wang O, Liu Z, Wu B (2017) Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries. ACS Appl Mater Interfaces 9:25358–25368

    Article  CAS  PubMed  Google Scholar 

  17. Zeng J, Cui Y, Qu D, Zhang Q, Wu J, Zhu X, Li Z, Zhang X (2016) Facile synthesis of platelike hierarchical Li1.2Ni0.13Co0.13Mn0.54O2 with exposed {010} planes for high-rate and long cycling-stable lithium ion batteries. ACS Appl Mater Interfaces 8:26082–26090

    Article  CAS  PubMed  Google Scholar 

  18. Qiu B, Wang J, **a Y, Liu Y, Qin L, Yao X, Liu Z (2013) Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. J Power Sources 240:530–535

    Article  CAS  Google Scholar 

  19. Wang Y, Shang K, He W, Ai X, Cao Y, Yang H (2015) Magnesium-doped Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7:13014–13021

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Geng T, Du C, Zuo P, Cheng X, Ma Y, Yin G (2016) Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for Li-ion batteries. J Power Sources 331:91–99

    Article  CAS  Google Scholar 

  21. Zhang J, Lei Z, Wang J, Li Y, Yang J (2015) Surface modification of Li1.2Ni0.13Co0.13Mn0.54O2 by hydrazine vapor as cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7:15821–15829

    Article  CAS  PubMed  Google Scholar 

  22. Kim M, Jo M, Hong Y, Cho J (2009) Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun 2009:218

    Article  Google Scholar 

  23. Wei G, Lu X, Ke F, Huang L, Li J, Wang Z, Zhou Z, Sun S (2010) Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22:4364–4367

    Article  CAS  PubMed  Google Scholar 

  24. Yan W, **e Y, Jiang J, Sun D, Ma X, Lan Z (2018) Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method. ACS Sustain Chem Eng 6:4625–4632

    Article  CAS  Google Scholar 

  25. Lin C, Lai M, Li L, Zhou H, **n Y (2013) Structure high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery. J Power Sources 244:272–279

    Article  CAS  Google Scholar 

  26. Li C, Zhang H, Fu L, Liu H, Wu Y, Rahmb E, Holze R, Wu H (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3883

    Article  CAS  Google Scholar 

  27. Zhou L, Tian M, Deng Y, Zheng Q, Xu C, Lin D (2016) La2O3-coated Li1.2Ni0.13Co0.13Mn0.54O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries. Ceram Int 42:15623–15633

    Article  CAS  Google Scholar 

  28. **e Q, Hu Z, Zhao C, Zhang Q, Liu K (2015) LaF3-coated Li[Li0.2Mn0.56Ni0.16Co0.08]O2 as cathode material with improved electrochemical performance for lithium ion batteries. RSC Adv 63:50859–50864

    Article  Google Scholar 

  29. Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Ni0.13Co0.13Mn0.54O2 as a lithium ion battery cathode material. J Electroanal Chem 782:256–263

    Article  CAS  Google Scholar 

  30. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1194

    Article  CAS  PubMed  Google Scholar 

  31. **ao B, Wang B, Liu J, Karthikeyan KP, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham TK, Li R, Cai M, Sun X (2017) Highly stable Li1.2Ni0.13Co0.13Mn0.54O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130

    Article  CAS  Google Scholar 

  32. Leleckaite A, Kareiva A (2004) Synthesis of garnet structure compounds using aqueous sol-gel processing. Opt Mater 26:123–128

    Article  CAS  Google Scholar 

  33. Pullar RC, Taylor MD, Bhattacharya AK (1999) The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol-gel precursor. J Eur Ceram Soc 19:1747–1758

    Article  CAS  Google Scholar 

  34. Singh D, Kadyan S, Bhagwan S (2017) Structural and photoluminescence characteristics of M3Al5O12:Eu3+ (M=Y, Gd and La) nanophosphors. J Mater Sci Mater Electron 28:13478–13486

    Article  CAS  Google Scholar 

  35. **ong K, Robertson J, Clark SJ (2008) Electronic defects in LaAlO3. Microelectron Eng 85:65–69

    Article  CAS  Google Scholar 

  36. Berchmans LJ, Angappana S, Visuvasama A, Ranjith KB (2008) Preparation and characterization of LaAlO3. Mater Chem Phys 109:113–118

    Article  CAS  Google Scholar 

  37. Nieminen M, Sajavaara T, Rauhala E, Putkonen M, Niinisto L (2001) Surface-controlled growth of LaAlO3 thin films by atomic layer epitaxy. J Mater Chem 11:2340–2345

    Article  CAS  Google Scholar 

  38. Garskaite E, Dubnikova N, Katelnikovas A, Kareiva A (2007) Syntheses and characterization of Gd3Al5O12 and La3Al5O12 garnets. ChemInform 38:30

    Article  Google Scholar 

  39. Yu Y, Wang G, Liu M, Zhang X, Wang X, Shu H, Huang W (2016) Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum do**. J Power Sources 335:65–75

    Article  CAS  Google Scholar 

  40. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621

    Article  CAS  Google Scholar 

  41. Arunkumar TA, Wu Y, Manthiram A (2007) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions. Chem Mater 19:3067–3073

    Article  CAS  Google Scholar 

  42. Wu Y, Manthiram A (2006) High capacity, surface-modified layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem Solid-State Lett 9:A221–A224

    Article  CAS  Google Scholar 

  43. Liu W (2015) Countering voltage decay and capacity fading of lithium-rich cathode material at 60C by hybrid surface protection layers. Adv Energy Mater 5:00274

    Google Scholar 

  44. Qiu B, Zhang MH, Wu LJ, Wang J, **a YG, Qian DN, Liu HD, Chen Y, An K, Zhu YM, Liu ZP, Meng YS (2016) Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Florian S, Hana B, Mudit D (2017) From surface ZrO2 coating to bulk Zr do** by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 7:1701682

    Google Scholar 

  46. Guo H, Wei Z, Jia K, Qiu B, Yin C, Meng F, Zhang Q, Gu L, Han S, Liu Y, Zhao H, Jiang W, Cui H, **a Y, Liu Z (2019) Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater:16220–16227

  47. Tan KS, Reddy MV, Subba GV, Chowdari BV (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2. J Power Sources 141:129–142

    Article  CAS  Google Scholar 

  48. Jafta CJ, Ozoemena KI, Mathe MK, Roos MD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    Article  CAS  Google Scholar 

  49. Liu J, Jayan BR, Manthiram A (2010) Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J Phys Chem C 114:9528–9533

    Article  CAS  Google Scholar 

  50. Jia X, Yan M, Zhou Z, Chen X, Yao C, Li D, Chen D, Chen Y (2017) Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochim Acta 254:50–58

    Article  CAS  Google Scholar 

  51. Guo H, Wei Z, Jia K, Qiu B, Yin C (2019) Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater 16:220–227

    Article  Google Scholar 

  52. Han J, Zheng H, Hu Z, Luo X, Ma Y, **e Q, Peng DL (2019) Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries. Electrochim Acta 299:844–852

    Article  CAS  Google Scholar 

  53. Liu J, Yang Y, Yu P, Li Y, Shao H (2006) Electrochemical characterization of LaNi5-xAlx (x=0.1-0.5) in the absence of additives. J Power Sources 161:1435–1442

    Article  CAS  Google Scholar 

  54. Li H, Guo H, Wang Z, Wang J, Li X, Chen N, Gui W (2018) Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes by chromium do**. Int J Hydrog Energy:4311109–4311119

Download references

Funding

The authors in this article received financial support from the Science and Technology Program of Sichuan Province under grant number 2019YJ0539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Chen, S. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries co-modified by lanthanum and aluminum. Ionics 27, 935–948 (2021). https://doi.org/10.1007/s11581-020-03888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03888-9

Keywords

Navigation