Log in

Efficient method for synthesizing graphene materials applied in lithium-ion capacitors with high performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To solve the problem of extremely low washing efficiency of graphite oxide (GO), an efficient method is successfully developed to prepare few-layer graphene powder, which is a key raw material for the preparation of high tap-density graphene (HTDG) anode materials. HTDG anode powder with the tap density of 0.68 kg L−1 can be obtained. The characterization results demonstrate that this efficient method is feasible for synthesizing the few-layer graphene and HTDG anode materials. The results of electrochemical measurements show that the HTDG anode materials display satisfactory electrochemical performance. The reversible capacity up to 326.3 mAh g−1 and excellent cyclic and rate performance, which are all better than those of commercial hard carbon materials, are achieved based on HTDG anode materials in a potential range of 0–1.5 V (vs. Li/Li+). Additionally, the acquired HTDG anode materials are also applied in soft-packaged Li-ion capacitors (LICs). The capacity retention of the LICs with operating voltage of 1.5–4.2 V can reach 90.4% after 1500 cycles at 1 C rate. The devices also possess the good rate performance: the capacity can maintain about 90% at 10 C, 86% at 15 C, 84% at 20 C, 79% at 40 C, 75% at 60 C, 70% at 80 C, and 56% at 100 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269. https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  2. Burke AF (2019) Electrochemical capacitors. In: Beard KW (ed) Linden’s handbook of batteries, 5th edn. McGraw-Hill Education 953–981. https://www.accessengineeringlibrary.com/content/book/9781260115925

  3. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62. https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  5. Martin C (2014) Driving change in the battery industry. Nat Nanotechnol 9:327–328. https://doi.org/10.1038/nnano.2014.92

    Article  CAS  PubMed  Google Scholar 

  6. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  7. Nitta N, Wu F, Lee JT, Yushin G (2014) Li-ion battery materials: present and future. Mater Today 18:252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  8. Mao S, Chen X, Li J, Li Q, Zeng H, Chen R, Li H, Wu M, Shi K, Nan H, Liu Q, Dang H (2021) Self-sacrifice template fabrication of graphene-like nitrogen-doped porous carbon nanosheets for applications in lithium-ion batteries and oxygen reduction reaction. Energy Technol 9:2100666. https://doi.org/10.1002/ente.202100666

    Article  CAS  Google Scholar 

  9. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nature Mater 7:845–854. https://doi.org/10.1142/9789814287005_0033

    Article  CAS  Google Scholar 

  10. Liu Q, Ji S, Yang J, Wang H, Pollet BG, Wang R (2017) Enhanced cycleability of amorphous MnO2 by covering on α-MnO2 needles in an electrochemical capacitor. Materials 10:988–1007. https://doi.org/10.3390/ma10090988

    Article  CAS  PubMed Central  Google Scholar 

  11. Jang BZ, Liu C, Neff D, Yu Z, Wang MC, **ong W, Zhamu A (2011) Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett 11:3785–3791. https://doi.org/10.1021/nl2018492

    Article  CAS  PubMed  Google Scholar 

  12. Ye L, Liang Q, Lei Y, Yu X, Han C, Shen W, Huang ZH, Kang F, Yang QH (2015) A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. J Power Sources 282:174–178. https://doi.org/10.1016/j.jpowsour.2015.02.028

    Article  CAS  Google Scholar 

  13. Omar N, Daowd M, Hegazy O, Sakka MA, Coosemans T, Bossche PV, Mierlo JV (2012) Assessment of lithium-ion capacitor for using in battery electric vehicle and hybrid electric vehicle applications. Electrochim Acta 86:305–315. https://doi.org/10.1016/j.electacta.2012.03.026

    Article  CAS  Google Scholar 

  14. Kim H, Park KY, Hong J, Kang K (2014) All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Sci Rep 4:5278. https://doi.org/10.1038/srep05278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raccichini R, Varzi A, Wei D, Passerini S (2017) Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv Mater 29:1–33. https://doi.org/10.1002/adma.201603421

    Article  CAS  Google Scholar 

  16. Liang K, Li M, Hao Y, Yan W, Su J (2020) Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-ion batteries. Chem Eng J 394:124956. https://doi.org/10.1016/j.cej.2020.124956

    Article  CAS  Google Scholar 

  17. Lee MJ, Lee K, Lim J, Li M (2021) Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv Funct Mater 31:2009397. https://doi.org/10.1002/adfm.202009397

    Article  CAS  Google Scholar 

  18. Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R (2021) A review study on the recent advances in develo** the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries. Ceram Int 47:22269. https://doi.org/10.1016/j.ceramint.2021.05.048

    Article  CAS  Google Scholar 

  19. Mo R, Li F, Tan X, Xu P, Tao R, Shen G, Lu X, Liu F, Shen L, Xu B, **ao Q, Wang X, Wang C, Li J, Wang G, Lu Y (2019) High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat Commun 10:1474. https://doi.org/10.1038/s41467-019-09274-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dsoke S, Fuchs B, Gucciardi E, Wohlfahrt-Mehrens M (2015) The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. J Power Sources 282:385–393. https://doi.org/10.1016/j.jpowsour.2015.02.079

    Article  CAS  Google Scholar 

  21. Tao Y, **e X, Lv W, Tang DM, Kong D, Huang Z, Nishihara H, Ishii T, Li B, Golberg D, Kang F, Kyotani T, Yang QH (2013) Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci Rep 3:2975. https://doi.org/10.1038/srep02975

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Chen N, Li Z, Shao H, Sun X, Liu F, Liu X, Guo Q, Qu L (2021) Reborn three-dimensional graphene with ultrahigh volumetric desalination capacity. Adv Mater 33:2105853. https://doi.org/10.1002/adma.202105853

    Article  CAS  Google Scholar 

  23. Liu T, Kim KC, Kavian R, Jang SS, Lee SW (2015) High-density lithium-ion energy storage utilizing the surface redox reactions in folded graphene films. Mater Chem 27:3291–3298. https://doi.org/10.1021/acs.chemmater.5b00314

    Article  CAS  Google Scholar 

  24. Peng X, Cao H, Qin Z, Zheng C, Zhao M, Liu PZ, Xu B, Zhou X, Liu Z, Guo J (2019) A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors. Electrochim Acta 305:56–63. https://doi.org/10.1016/j.electacta.2019.03.042

    Article  CAS  Google Scholar 

  25. Dong Y, Lin X, Wang D, Yuan R (2020) Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Mater 30:287–295. https://doi.org/10.1016/j.ensm.2020.05.016

    Article  Google Scholar 

  26. Zong J, Ni W, Xu H, Ding F, Wang T, Feng W, Liu X (2019) High tap-density graphene cathode material for lithium-ion capacitors via a mass-scalable synthesis method. Chem Eng J 360:1233–1240. https://doi.org/10.1016/j.cej.2018.10.222

    Article  CAS  Google Scholar 

  27. Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, Chen CM, Hou PX, Liu C, Yang QH (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736. https://doi.org/10.1021/nn900933u

    Article  CAS  PubMed  Google Scholar 

  28. Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. Mater Chem 20:8467–8469. https://doi.org/10.1039/C0JM01876G

    Article  CAS  Google Scholar 

  29. Shen B, Lu DD, Zhai WT, Zheng W (2013) Synthesis of graphene by low-temperature exfoliation and reduction of graphite oxide under ambient atmosphere. J Mater Chem C 1:50–53. https://doi.org/10.1039/C2TC00044J

    Article  CAS  Google Scholar 

  30. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Electron Spectrosc Relat Phenom 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  31. Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:10160. https://doi.org/10.1038/srep10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan H, Ye J, Ye C, Yin S, Zhu Y (2021) Highly efficient preparation of graphite oxide without water enhanced oxidation. Chem Mater 33:1731–1739. https://doi.org/10.1021/acs.chemmater.0c04505

    Article  CAS  Google Scholar 

  33. Hummers W, Offeman R (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1002/9780470145326.ch150

    Article  CAS  Google Scholar 

  34. Zong J, Diao Y, Ding F, Feng W, Liu X (2016) Simple method for synthesizing few-layer graphene as cathodes in surface-enabled lithium ion-exchanging cells. Ionics 22:1575–1584. https://doi.org/10.1007/s11581-016-1690-5

    Article  CAS  Google Scholar 

  35. Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Mater 9:840–845. https://doi.org/10.1038/nmat2858

    Article  CAS  Google Scholar 

  36. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev 54:17954–17961. https://doi.org/10.1103/PhysRevB.54.17954

    Article  CAS  Google Scholar 

  37. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. Phys Chem 110:8535–8539. https://doi.org/10.1021/jp060936f

    Article  CAS  Google Scholar 

  38. Otake Y, Jenkins RG (1993) Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon 31:109–121. https://doi.org/10.1016/0008-6223(93)90163-5

    Article  CAS  Google Scholar 

  39. Horiuchi S, Gotou T, Fujiwara M (2004) Single graphene sheet detected in a carbon nanofilm. Appl Phys Lett 84:2403–2405. https://doi.org/10.1063/1.1689746

    Article  CAS  Google Scholar 

  40. Wang K, Xu Y, Li Y, Dravid V, Wu J, Huang Y (2019) Sodium storage in hard carbon with curved graphene platelets as the basic structural units. J Mater Chem A 7:3327–3335. https://doi.org/10.1039/C8TA11510A

    Article  CAS  Google Scholar 

  41. Ren JJ, Su LW, Qin X, Yang M, Wei JP, Zhou Z, Shen PW (2014) Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sources 264:108–113. https://doi.org/10.1016/j.jpowsour.2014.04.076

    Article  CAS  Google Scholar 

  42. Yang H, Kannappan S, Pandian AS, Jang JH, Lee YS, Lu W (2015) Nanoporous graphene materials by low-temperature vacuum-assisted thermal process for electrochemical energy storage. J Power Sources 284:146–153. https://doi.org/10.1016/j.jpowsour.2015.03.015

    Article  CAS  Google Scholar 

  43. Zhang J, Wang J, Shi Z, Xu Z (2018) Electrochemical behavior of lithium ion capacitor under low temperature. J Electroanal Chem 817:195–201. https://doi.org/10.1016/j.jelechem.2018.04.014

    Article  CAS  Google Scholar 

  44. Sun X, Zhang X, Liu W, Wang K, Li C, Li Z, Ma Y (2017) Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochim Acta 235:158–166. https://doi.org/10.1016/j.electacta.2017.03.110

    Article  CAS  Google Scholar 

  45. Shi K, Lin Y, **ong Z, Li J, Zhang S, Liu Q (2022) Synergistic effects of porphyrin-ring catalytic center and metal catalytic site from crosslinked porphyrin-based porous polyimides cathode host for lithium polysulfides conversion in lithium-sulfur batteries. Chem Eng J 430:132692. https://doi.org/10.1016/j.cej.2021.132692

    Article  CAS  Google Scholar 

  46. Liu Q, Liu Z, **. Ionics 19:445–450. https://doi.org/10.1007/s11581-012-0775-z

    Article  CAS  Google Scholar 

  47. Lin Q, Zhang J, Kong D, Cao T, Zhang SW, Chen X, Tao Y, Lv W, Kang F, Yang QH (2019) Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv Energy Mater 9:1803078. https://doi.org/10.1002/aenm.201803078

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Tian** Municipal Education Commission Scientific Research Program (grant number: 2021KJ090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zong or Tianyang Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1209 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, J., Rong, B., Dong, F. et al. Efficient method for synthesizing graphene materials applied in lithium-ion capacitors with high performance. Ionics 28, 2919–2929 (2022). https://doi.org/10.1007/s11581-022-04546-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04546-y

Keywords

Navigation