Log in

On the birational geometry of \({\mathbb {Q}}\)-Fano threefolds of large Fano index, I

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We investigate the rationality problem for \({\mathbb {Q}}\)-Fano threefolds of Fano index \(\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altınok, S., Brown, G., Reid, M.: Fano 3-folds, \(K3\) surfaces and graded rings. In: Topology and Geometry: Commemorating SISTAG, volume 314 of Contemp. Math., pp. 25–53. Amer. Math. Soc., Providence (2002)

  2. Hamid, A., Cheltsov, I., Park, J.: On geometry of Fano threefold hypersurfaces. In Farkas, G., van der Geer, G., Shen, M., Taelman, L (eds.), Rationality of Varieties, pp. 1–14. Springer International Publishing, Cham (2021)

  3. Alexeev, V.: General elephants of \(\textbf{Q} \)-Fano 3-folds. Compos. Math. 91(1), 91–116 (1994)

    MathSciNet  Google Scholar 

  4. Gavin Brown et al. Graded Ring Database

  5. Caravantes, J.: Low codimension Fano-Enriques threefolds. Note Mat. 28(2), 117–147 (2008)

    MathSciNet  Google Scholar 

  6. Campana, F., Flenner, H.: Projective threefolds containing a smooth rational surface with ample normal bundle. J. Reine Angew. Math. 440, 77–98 (1993)

    MathSciNet  Google Scholar 

  7. Corti, A.: Factoring birational maps of threefolds after Sarkisov. J. Algebr. Geom. 4(2), 223–254 (1995)

    MathSciNet  Google Scholar 

  8. Cheltsov, I., Prokhorov, Y.: Del Pezzo surfaces with infinite automorphism groups. Algebr. Geom. 8(3), 319–357 (2021)

    Article  MathSciNet  Google Scholar 

  9. Cheltsov, I., Przyjalkowski, V., Shramov, C.: Which quartic double solids are rational? J. Algebr. Geom. 28(2), 201–243 (2019)

    Article  MathSciNet  Google Scholar 

  10. Hidaka, F., Watanabe, K.: Normal Gorenstein surfaces with ample anti-canonical divisor. Tokyo J. Math. 4(2), 319–330 (1981)

    Article  MathSciNet  Google Scholar 

  11. Iskovskikh, V.A., Prokhorov, Y.: Fano varieties. Algebraic geometry V, volume 47 of Encyclopaedia Math. Sci. Springer, Berlin (1999)

  12. Kawamata, Y.: Boundedness of \({\bf Q}\)-Fano threefolds. In: Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), volume 131 of Contemp. Math., pp. 439–445. Amer. Math. Soc., Providence, RI (1992)

  13. Kawamata, Y.: The minimal discrepancy coefficients of terminal singularities in dimension three. Appendix to V. V. Shokurov’s paper \(3\)-fold log flips. Russ. Acad. Sci. Izv. Math 40(1), 193–195 (1993)

    Google Scholar 

  14. Kawamata, Y.: Divisorial contractions to \(3\)-dimensional terminal quotient singularities. In: Higher-Dimensional Complex Varieties (Trento, 1994)

  15. Kawakita, M.: Divisorial contractions in dimension three which contract divisors to smooth points. Invent. Math. 145(1), 105–119 (2001)

    Article  MathSciNet  Google Scholar 

  16. Kawakita, M.: Three-fold divisorial contractions to singularities of higher indices. Duke Math. J. 130(1), 57–126 (2005)

    Article  MathSciNet  Google Scholar 

  17. Liu, H., Liu, J.: Kawamata–Miyaoka type inequality for canonical \({\bf Q}\)-Fano varieties. (2023)

  18. Mori, S.: Flip theorem and the existence of minimal models for \(3\)-folds. J. Amer. Math. Soc. 1(1), 117–253 (1988)

    Article  MathSciNet  Google Scholar 

  19. Mori, S., Prokhorov, Y.: On \(\textbf{Q} \)-conic bundles. Publ. Res. Inst. Math. Sci. 44(2), 315–369 (2008)

    Article  MathSciNet  Google Scholar 

  20. Miyanishi, M., Zhang, D.-Q.: Gorenstein log del Pezzo surfaces of rank one. J. Algebra 118(1), 63–84 (1988)

    Article  MathSciNet  Google Scholar 

  21. Okada, T.: Stable rationality of orbifold Fano 3-fold hypersurfaces. J. Algebr. Geom. 28(1), 99–138 (2019)

    Article  MathSciNet  Google Scholar 

  22. Prokhorov, Yu.: A remark on the resolution of three-dimensional terminal singularities. Russ. Math. Surv. 57(4), 815–816 (2002)

    Article  MathSciNet  Google Scholar 

  23. Prokhorov, Y.: \(\textbf{Q} \)-Fano threefolds of large Fano index. I. Doc. Math. 15, 843–872 (2010)

    Article  MathSciNet  Google Scholar 

  24. Prokhorov, Yu.: Fano threefolds of large Fano index and large degree. Sbornik: Math. 204(3), 347–382 (2013)

    Article  MathSciNet  Google Scholar 

  25. Prokhorov, Yu.: Q-Fano threefolds of index 7. Proc. Steklov Inst. Math. 294, 139–153 (2016)

    Article  MathSciNet  Google Scholar 

  26. Prokhorov, Y.: Equivariant minimal model program. Russ. Math. Surv. 76(3), 461–542 (2021)

    Article  MathSciNet  Google Scholar 

  27. Prokhorov, Y.: Conic bundle structures on \( Q \)-Fano threefolds. Electron. Res. Arch. 30(5), 1881–1897 (2022). (Special issue on birational geometry and moduli of projective varieties)

    Article  MathSciNet  Google Scholar 

  28. Prokhorov, Y.: Rationality of \(\bf Q \)-Fano threefolds of large Fano index. London Math. Soc. Lecture Note Ser. 478, 253–274 (2022). (Cambridge University Press,)

    MathSciNet  Google Scholar 

  29. Reid, M.: Young person’s guide to canonical singularities. In Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pp. 345–414. Amer. Math. Soc., Providence, RI (1987)

  30. Sano, T.: Classification of non-Gorenstein \({ Q}\)-Fano \(d\)-folds of Fano index greater than \(d-2\). Nagoya Math. J. 142, 133–143 (1996)

    Article  MathSciNet  Google Scholar 

  31. Suzuki, K.: On Fano indices of \(\textbf{Q} \)-Fano \(3\)-folds. Manuscripta Math. 114(2), 229–246 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Prokhorov.

Ethics declarations

Conflict of interest.

The author declares that he has no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Russian Science Foundation under Grant No. 23-11-00033, https://rscf.ru/project/23-11-00033/.

Appendix A

Appendix A

In this section we present a computer algorithm (see [28, § 3] or [5, § 3]) that alow to list all the numerical possibilities for \({\mathbb {Q}}\)-Fano threefolds of index at least 3. Let X be a \({\mathbb {Q}}\)-Fano threefold with \(q:=\textrm{q}_{\mathbb {Q}}(X)\ge 3\) and let \(T\in \text {Cl}(X)_{\textrm{t}}\) be an element of order N.

Step 1

By [12] we have the inequality

$$\begin{aligned} 0<-K_X\cdot c_2(X)= 24-\sum _{P\in {\textbf{B}}} \frac{r_P-1}{r_P}. \end{aligned}$$
(A.1.1)

This produces a finite (but huge) number of possibilities for the basket \({\textbf{B}}(X)\) and the number \(-K_X\cdot c_2(X)\).

Step 2

Theorem 2.2.4 implies that \(q\in \{3,\dots ,11, 13,17,19\}\). In each case we compute \(A_X^3\) by the formula

$$\begin{aligned} A_X^3=\frac{12}{(q-1)(q-2)}\Bigl ( 1-\frac{A_X\cdot c_2(X)}{12}+\sum _{P\in B} c_P(-A_X) \Bigr ) \end{aligned}$$

(see [31]), where \(c_P\) is the correction term in the orbifold Riemann-Roch formula [29]. The number \(rA_X^3\) must be a positive integer by Theorem 2.2.4(iii).

Step 3

On this step we can use an improved version of Bogomolov–Miyaoka inequality [17] instead of the one used in [12] and [31]. Thus we have

$$\begin{aligned} (-K_X)^3\ {\left\{ \begin{array}{ll} < 3(-K_X)\cdot c_2(X)&{}\hbox { if}\ \textrm{q}_{\mathbb {Q}}(X)\ne 4,\, 5, \\ \le \frac{25}{8}(-K_X)\cdot c_2(X)&{}\text {otherwise}. \end{array}\right. } \end{aligned}$$

This removes a lot of possibilities.

Step 4

In a neighborhood of each point \(P\in X\) we can write \(A_X\sim l_PK_X\), where \(0\le l_P<r_P\). There is a finite number of possibilities for the collection \(\{(l_P)\}\). If \({\text {q}}_{{\text {W}}}(X)=\textrm{q}_{\mathbb {Q}}(X)\), then \(\gcd (q,r)=1\) by Theorem 2.2.4. In this case the numbers \(l_P\) are uniquely determined by \(1+ql_P\equiv 0\mod r_P\) because \(K_X+qA_X\sim 0\).

Step 5

Similarly, a neighborhood of each point \(P\in X\) we can write \(T\sim l_P'K_X\), where \(0\le l_P'<r_P\). The collection \(\{(l_P')\}\) and the number N satisfy the following properties:

$$\begin{aligned} \chi (X,\, {\mathscr {O}}_X(NT))=1\qquad \hbox { and}\qquad \chi (X,\, {\mathscr {O}}_X(jT))=0\quad \text {for}\ j=1,\dots ,N-1 \end{aligned}$$

(by the Kawamata–Viehweg vanishing). Thus we obtain a finite number of possibilities for \(\{(l_P')\}\) and N.

Step 6

Finally, applying Kawamata–Viehweg vanishing we obtain

$$\begin{aligned} \chi (X,\, {\mathscr {O}}_X(mA_X+jT))={\text {h}}^0(X,\, {\mathscr {O}}_X(mA_X+jT))=0. \end{aligned}$$

for \(-q<m<0\) and \(0\le j<n\). Again, we check this condition using orbifold Riemann-Roch and remove a lot of possibilities.

Step 7

We obtain a list of collections \(\left( q, {\textbf{B}}(X), A_X^3, \{(l_P)\}, n \{(l_P')\}\right) \). In each case we compute \({\text {g}}(X)\) and \( {{\text {h}}}_X(t,\sigma )\) by using the orbifold Riemann-Roch theorem. For example,

$$\begin{aligned} {\text {g}}(X)= -\frac{1}{2} K_X^3+ 1-\sum _{P\in {\textbf{B}}} \frac{b_P(r_P-b_P)}{2r_P}. \end{aligned}$$
(A.1.2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, Y. On the birational geometry of \({\mathbb {Q}}\)-Fano threefolds of large Fano index, I. Ann Univ Ferrara 70, 955–985 (2024). https://doi.org/10.1007/s11565-024-00515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-024-00515-7

Keywords

Mathematics Subject Classification

Navigation