Log in

The mechanical behavior of bovine spinal cord white matter under various strain rate conditions: tensile testing and visco-hyperelastic constitutive modeling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The mechanical behavior of the white matter is important for estimating the damage of the spinal cord during accidents. In this study, we conducted uniaxial tension testing in vitro of bovine spinal cord white matter under extremely high strain rate conditions (up to 100 s−1). A visco-hyperelastic constitutive law for modeling the strain rate-dependent behavior of the bovine spinal cord white matter was developed. A set of material constants was obtained using a Levenberg–Marquardt fitting algorithm to match the uniaxial tension experimental data with various strain rates. Our experimental data confirmed that the modulus and tensile strength increased when the strain rate is higher. For the extremely high strain rate condition (100 s−1), we found that both the modulus and failure stress significantly increased compared with the low strain rate case. These new data in terms of mechanical response at high strain rate provide insight into the spine injury mechanism caused by high-speed impact. Moreover, the developed constitutive model will allow researchers to perform more realistic finite element modeling and simulation of spinal cord injury damage under various complicated conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(\lambda\) :

Stretch

\({\varvec{\sigma}}\) :

Cauchy stress tensor

\({{\varvec{\sigma}}}_{{\varvec{h}}}\) :

Cauchy stress tensor of hyperelastic unit

\({{\varvec{\sigma}}}_{{\varvec{v}}}\) :

Cauchy stress tensor of viscoelastic unit

\(W\) :

Strain energy potential function

\({\varvec{F}}\) :

Deformation gradient tensor

\({\varvec{X}}\) :

Initial position

\({\varvec{x}}\) :

Current position

\({u}_{i}\) :

The ith component of the displacement

\({\varvec{C}}\) :

Right Cauchy–Green deformation tensor

\({\varvec{E}}\) :

Green–Lagrangian strain tensor

\({\varvec{I}}\) :

Identity matrix

\({I}_{i}\) :

Invariants of \({\varvec{C}}\)

\({\varvec{S}}\) :

The Second Piola–Kirchhoff stress tensor

\({p}_{h}\) :

Hydrostatic pressure

J :

Determinant of \({\varvec{C}}\)

c ij :

Material constants

\(\boldsymbol{\Omega }\) :

Tensor function describing the strain history effects on stress

\({\sigma }_{ij}\) :

Components of \({\varvec{\sigma}}\)

\(\tau\) :

Integral variable of time

\(U\) :

Kernel function of deformation, time, and deformation rate

\(m(t)\) :

Memory function

\({m}_{i}\) :

Weight factors satisfying \({\sum }_{i=1}^{N}{m}_{i}=1\)

\({\theta }_{i}\) :

Relaxation times

\(\zeta\) :

History-dependent stretch

References

  1. Sterba M, C-éric Aubin, Wagnac E, Fradet L, Arnoux P (2019) Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions : a finite element study. Med Biol Eng Comput 57:1381

    Article  PubMed  Google Scholar 

  2. Zhang JG, Wang F, Zhou R, Xue Q (2011) A three-dimensional finite element model of the cervical spine: an investigation of whiplash injury. Med Biol Eng Comput 49:193–201. https://doi.org/10.1007/s11517-010-0708-9

    Article  PubMed  Google Scholar 

  3. Lin HM, Liu CL, Pan YN, Huang CH, Shih SL, Wei SH, Chen CS (2014) Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis. Med Biol Eng Comput 52:499–508. https://doi.org/10.1007/s11517-014-1154-x

    Article  PubMed  Google Scholar 

  4. Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ (2014) Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 52:87–94. https://doi.org/10.1007/s11517-013-1124-8

    Article  PubMed  Google Scholar 

  5. Sokolis DP (2010) A passive strain-energy function for elastic and muscular arteries: correlation of material parameters with histological data. Med Biol Eng Comput 48:507–518. https://doi.org/10.1007/s11517-010-0598-x

    Article  PubMed  Google Scholar 

  6. Liu Q, Liu J, Guan F, Han X, Cao L, Shan K (2019) Identification of the visco-hyperelastic properties of brain white matter based on the combination of inverse method and experiment. Med Biol Eng Comput 57:1109–1120. https://doi.org/10.1007/s11517-018-1944-7

    Article  PubMed  Google Scholar 

  7. Ozawa H, Matsumoto T, Ohashi T, Sato M, Kokubun S (2001) Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method. J Neurosurg 95:221–224

    CAS  PubMed  Google Scholar 

  8. Ichihara K, Taguchi T, Sakuramoto I, Kawano S, Kawai S (2009) Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J Neurosurg Spine 99:278–285. https://doi.org/10.3171/spi.2003.99.3.0278

    Article  Google Scholar 

  9. Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S (2001) Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J Neurotrauma 18:361–367. https://doi.org/10.1089/08977150151071053

    Article  CAS  PubMed  Google Scholar 

  10. Bertram CD, Brodbelt AR, Stoodley MA (2005) The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J Biomech Eng 127:1099–1109

    Article  CAS  PubMed  Google Scholar 

  11. Bilston LE, Thibault LE (1996) The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng 24:67–74

    Article  CAS  PubMed  Google Scholar 

  12. Cheng S, Bilston LE (2007) Unconfined compression of white matter. J Biomech 40:117–124. https://doi.org/10.1016/j.jbiomech.2005.11.004

    Article  PubMed  Google Scholar 

  13. Sparrey CJ, Keaveny TM (2011) Compression behavior of porcine spinal cord white matter. J Biomech 44:1078–1082. https://doi.org/10.1016/j.jbiomech.2011.01.035

    Article  PubMed  Google Scholar 

  14. Tunturi AR (1978) Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J Neurosurg 48:975

    Article  CAS  PubMed  Google Scholar 

  15. Cheng S, Clarke EC, Bilston LE (2009) The effects of preconditioning strain on measured tissue properties. J Biomech 42:1360–1362. https://doi.org/10.1016/j.jbiomech.2009.03.023

    Article  PubMed  Google Scholar 

  16. Oakland RJ, Hall RM, Wilcox RK, Barton DC (2006) The biomechanical response of spinal cord tissue to uniaxial loading. 220:489–492. https://doi.org/10.1243/09544119JEIM135

  17. Ramo NL, Troyer KL, Puttlitz CM (2018) Viscoelasticity of spinal cord and meningeal tissues. Acta Biomater 75:253–262. https://doi.org/10.1016/j.actbio.2018.05.045

    Article  PubMed  Google Scholar 

  18. Clarke EC (2010) Spinal cord mechanical properties. Springer, Berlin, Heidelberg, pp 25–40

    Google Scholar 

  19. Ramo NL, Shetye SS, Streijger F, Lee JHT, Troyer KL, Kwon BK, Cripton P, Puttlitz CM (2018) Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord. Acta Biomater 68:78–89. https://doi.org/10.1016/j.actbio.2017.12.024

    Article  PubMed  Google Scholar 

  20. Troyer KL, Estep DJ, Puttlitz CM (2012) Viscoelastic effects during loading play an integral role in soft tissue mechanics. Acta Biomater 8:234–243. https://doi.org/10.1016/j.actbio.2011.07.035

    Article  PubMed  Google Scholar 

  21. Hung T-K, Chang G-L, Lin H-S, Walter FR, Bunegin L (1981) Stress-strain relationship of the spinal cord of anesthetized cats. J Biomech 14:269–276. https://doi.org/10.1016/0021-9290(81)90072-5

    Article  CAS  PubMed  Google Scholar 

  22. Bilston LE, Thibault LE (1996) The mechanical properties of the human cervical spinal cord in vitro. Biomed Eng 24:67–74

    CAS  Google Scholar 

  23. Clarke EC, Cheng S, Ã LEB (2009) The mechanical properties of neonatal rat spinal cord in vitro , and comparisons with adult. 42:1397–1402. https://doi.org/10.1016/j.jbiomech.2009.04.008

  24. Fiford RJ, Bilston LE (2006) The mechanical properties of rat spinal cord in vitro. 38:1509–1515. https://doi.org/10.1016/j.jbiomech.2004.07.009

  25. Cheng S, Clarke EC, Bilston LE (2008) Rheological properties of the tissues of the central nervous system: a review. Med Eng Phys 30:1318–1337. https://doi.org/10.1016/J.MEDENGPHY.2008.06.003

    Article  PubMed  Google Scholar 

  26. Fung Y-C (1993) Biomechanics : mechanical properties of living tissues. Springer-Verlag, New York

    Book  Google Scholar 

  27. Lucas SR, Bass CR, Salzar RS, Oyen ML, Planchak C, Ziemba A, Shender BS, Paskoff G (2008) Viscoelastic properties of the cervical spinal ligaments under fast strain-rate deformations. Acta Biomater 4:117–125. https://doi.org/10.1016/j.actbio.2007.08.003

    Article  PubMed  Google Scholar 

  28. Abramowitch SD, Woo SL-Y (2004) An Improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J Biomech Eng 126:92–97

    Article  PubMed  Google Scholar 

  29. Provenzano PP, Lakes RS, Corr DT, Vanderby R (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol 1:45–57. https://doi.org/10.1007/s10237-002-0004-1

    Article  CAS  PubMed  Google Scholar 

  30. Shetye SS, Troyer KL, Streijger F, Lee JHT, Kwon BK, Cripton PA, Puttlitz CM (2014) Nonlinear viscoelastic characterization of the porcine spinal cord. Acta Biomater 10:792–797. https://doi.org/10.1016/j.actbio.2013.10.038

    Article  PubMed  Google Scholar 

  31. Galle B, Ouyang H, Shi R, Nauman E (2010) A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J Biomech 43:2839–2843. https://doi.org/10.1016/j.jbiomech.2010.06.014

    Article  PubMed  Google Scholar 

  32. Karimi A, Shojaei A, Tehrani P (2017) Mechanical properties of the human spinal cord under the compressive loading. J Chem Neuroanat 86:15–18. https://doi.org/10.1016/j.jchemneu.2017.07.004

    Article  PubMed  Google Scholar 

  33. Garcia-Gonzalez D, Jerusalem A (2019) Energy based mechano-electrophysiological model of CNS damage at the tissue scale. J Mech Phys Solids 125:22–37

    Article  Google Scholar 

  34. Liu H, Holzapfel GA, Skallerud BH, Prot V (2019) Anisotropic finite strain viscoelasticity: constitutive modeling and finite element implementation. J Mech Phys Solids 124:172–188. https://doi.org/10.1016/j.jmps.2018.09.014

    Article  CAS  Google Scholar 

  35. Bischoff JE, Arruda EM, Grosh K (2004) A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol 3:56–65

    Article  PubMed  Google Scholar 

  36. Chui C, Kobayashi E, Chen X, Hisada T, Sakuma I (2007) Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Med Biol Eng Comput 45:99–106

    Article  CAS  PubMed  Google Scholar 

  37. Mendis KK, Stalnaker RL, Advani SH (1995) A constitutive relationship for large deformation finite element modeling of brain tissue. J Biomech Eng 117:279–285. https://doi.org/10.1115/1.2794182

    Article  CAS  PubMed  Google Scholar 

  38. Miller K (1999) Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J Biomech 32:531–537. https://doi.org/10.1016/S0021-9290(99)00010-X

    Article  CAS  PubMed  Google Scholar 

  39. Samadi-Dooki A, Voyiadjis GZ, Stout RW (2018) A combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentation. J Mech Behav Biomed Mater 77:24–33. https://doi.org/10.1016/j.jmbbm.2017.08.037

    Article  PubMed  Google Scholar 

  40. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley

    Google Scholar 

  41. Avril S (2017) Hyperelasticity of soft tissues and related inverse problems. Springer, Cham, pp 37–66

    Google Scholar 

  42. Lockett FJ (1972) Nonlinear viscoelastic solids. Academic Press

    Google Scholar 

  43. Yang LM, Shim VPW, Lim CT (2000) A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. Int J Impact Eng 24:545–560. https://doi.org/10.1016/S0734-743X(99)00044-5

    Article  Google Scholar 

  44. Anani Y, Alizadeh Y (2011) Visco-hyperelastic constitutive law for modeling of foam’s behavior. Mater Des 32:2940–2948. https://doi.org/10.1016/j.matdes.2010.11.010

    Article  Google Scholar 

  45. Wang L-L, Huang D, Gan S (1996) Nonlinear viscoelastic constitutive relations and nonlinear viscoelastic wave propagation for polymers at high strain rates. Constitutive relation in high/very high strain rates. Springer, Tokyo Japan, pp 137–146

    Chapter  Google Scholar 

  46. Strutz, T. (2011) Data fitting and uncertainty: A practical introduction to weighted least squares and beyond. Germany: Vieweg+ Teubner, Wiesbaden

  47. Ogden R (1997) Non-linear elastic deformations. Dover Publications, New York

    Google Scholar 

  48. Hung T-K, Chang G-L, Chang J-L, Albin MS (1981) Stress-strain relationship and neurological sequelae of uniaxial elongation of the spinal cord of cats. Surg Neurol 15:471–476. https://doi.org/10.1016/S0090-3019(81)80043-2

    Article  CAS  PubMed  Google Scholar 

  49. Hung T-K, Chang G-L (1981) Biomechanical and neurological response of the spinal cord of a puppy to uniaxial tension. J Biomech Eng 103:43–47

    Article  CAS  PubMed  Google Scholar 

  50. Cooney GM, Moerman KM, Takaza M, Winter DC, Simms CK (2015) Uniaxial and biaxial mechanical properties of porcine linea alba. J Mech Behav Biomed Mater 41:68–82. https://doi.org/10.1016/j.jmbbm.2014.09.026

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by a Grant-in-Aid for Scientific Research (C) from the JSPS (grant 21560107).

Author information

Authors and Affiliations

Authors

Contributions

Fei Jiang wrote and prepared the manuscript. Itsuo Sakuramoto and Junji Ohgi conducted the experiment. Fei Jiang and Yoshikatsu Onomoto developed the constitutive model. Norihiro Nishida and **an Chen gave advice. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fei Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Sakuramoto, I., Nishida, N. et al. The mechanical behavior of bovine spinal cord white matter under various strain rate conditions: tensile testing and visco-hyperelastic constitutive modeling. Med Biol Eng Comput 61, 1381–1394 (2023). https://doi.org/10.1007/s11517-023-02787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02787-1

Keywords

Navigation