Log in

3D cerebral MR image segmentation using multiple-classifier system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The three soft brain tissues white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) identified in a magnetic resonance (MR) image via image segmentation techniques can aid in structural and functional brain analysis, brain’s anatomical structures measurement and visualization, neurodegenerative disorders diagnosis, and surgical planning and image-guided interventions, but only if obtained segmentation results are correct. This paper presents a multiple-classifier-based system for automatic brain tissue segmentation from cerebral MR images. The developed system categorizes each voxel of a given MR image as GM, WM, and CSF. The algorithm consists of preprocessing, feature extraction, and supervised classification steps. In the first step, intensity non-uniformity in a given MR image is corrected and then non-brain tissues such as skull, eyeballs, and skin are removed from the image. For each voxel, statistical features and non-statistical features were computed and used a feature vector representing the voxel. Three multilayer perceptron (MLP) neural networks trained using three different datasets were used as the base classifiers of the multiple-classifier system. The output of the base classifiers was fused using majority voting scheme. Evaluation of the proposed system was performed using Brainweb simulated MR images with different noise and intensity non-uniformity and internet brain segmentation repository (IBSR) real MR images. The quantitative assessment of the proposed method using Dice, Jaccard, and conformity coefficient metrics demonstrates improvement (around 5 % for CSF) in terms of accuracy as compared to single MLP classifier and the existing methods and tools such FSL-FAST and SPM. As accurately segmenting a MR image is of paramount importance for successfully promoting the clinical application of MR image segmentation techniques, the improvement obtained by using multiple-classifier-based system is encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alia OM, Mandava R, Aziz ME (2011) A hybrid harmony search algorithm for MRI brain segmentation. Evol Intell 4:31–49. doi:10.1007/s12065-011-0048-1

    Article  Google Scholar 

  2. Apostolova LG, Dinov ID, Dutton RA et al (2006) 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain 129:2867–2873. doi:10.1093/brain/awl274

    Article  PubMed  Google Scholar 

  3. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851. doi:10.1016/j.neuroimage.2005.02.018

    Article  PubMed  Google Scholar 

  4. Baraldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. Geosci Remote Sensing 33:283–304. doi:10.1109/36.377929

    Google Scholar 

  5. Chang H-H, Zhuang AH, Valentino DJ, Chu W-C (2009) Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47:122–135. doi:10.1016/j.neuroimage.2009.03.068

    Article  PubMed  Google Scholar 

  6. Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust brain MRI tissue classification method. Med Image Anal 7:513–527. doi:10.1016/S1361-8415(03)00037-9

    Article  PubMed  Google Scholar 

  7. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  8. Dietterich TG (2000) Ensemble methods in machine learning. In: Kittler J, Roli F (eds) First international workshop on multiple classifier systems. Lecture notes in computer science. Springer, New York, pp 1–15

  9. Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Pattern Recognit 35:2279–2301. doi:10.1016/S0031-3203(01)00178-9

    Article  Google Scholar 

  10. Gui L, Lisowski R, Faundez T et al (2012) Morphology-driven automatic segmentation of MR images of the neonatal brain. Med Image Anal 16:1565–1579. doi:10.1016/j.media.2012.07.006

    Article  PubMed  Google Scholar 

  11. Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytol 11:37–50. doi:10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  12. Jiménez-Alaniz JR, Medina-Bañuelos V, Yáñez-Suárez O (2006) Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information. Med Imaging IEEE Trans 25:74–83. doi:10.1109/TMI.2005.860999

    Article  Google Scholar 

  13. Kasiri K, Kazemi K, Dehghani MJ, Helfroush MS (2013) A hybrid hierarchical approach for brain tissue segmentation by combining brain atlas and least square support vector machine. J Med Signals Sensors 3:232–243

    Google Scholar 

  14. Kennedy D, Filipek P, Caviness V (1989) Anatomic segmentation and volumetric calculations in nuclear magnetic resonance imaging. IEEE Trans Med Imaging 8:1–7. doi:10.1109/42.20356

    Article  CAS  PubMed  Google Scholar 

  15. Kuklisova-Murgasova M, Aljabar P, Srinivasan L et al (2011) A dynamic 4D probabilistic atlas of the develo** brain. Neuroimage 54:2750–2763. doi:10.1016/j.neuroimage.2010.10.019

    Article  PubMed  Google Scholar 

  16. Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley, New Jersey

    Book  Google Scholar 

  17. Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120. doi:10.1192/bjp.172.2.110

    Article  CAS  PubMed  Google Scholar 

  18. Lo C-H, Don H-S (1989) 3-D moment forms: their construction and application to object identification and positioning. Pattern Anal Mach Intell IEEE Trans 11:1053–1064. doi:10.1109/34.42836

    Article  Google Scholar 

  19. Marroquin JL, Vemuri BC, Botello S et al (2002) An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21:934–945. doi:10.1109/TMI.2002.803119

    Article  CAS  PubMed  Google Scholar 

  20. Mayer A, Greenspan H (2009) An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans Med Imaging 28:74–83. doi:10.1109/TMI.2009.2013850

    Article  Google Scholar 

  21. McCarley RW, Wible CG, Frumin M et al (1999) MRI anatomy of schizophrenia. Biol Psychiatry 45:1099–1119. doi:10.1016/S0006-3223(99)00018-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mukundan R (2008) Fast computation of geometric moments and invariants using Schlick’s approximation. Int J Pattern Recognit Artif Intell 22:1363–1377. doi:10.1142/S0218001408006764

    Article  Google Scholar 

  23. Ortiz A, Palacio A, Górriz J (2013) Segmentation of brain MRI using SOM-FCM-based method and 3D statistical descriptors. Methods Med. doi:10.1093/cercor/bhu015

  24. Rizon M, Yazid H, Saad P et al (2006) Object detection using geometric invariant moment school of computer and communication engineering. Am J Appl Sci 2:1876–1878

    Google Scholar 

  25. Shahvaran Z, Kazemi K (2012) Variational level set combined with Markov random field modeling for simultaneous intensity non-uniformity correction and segmentation of MR images. J Neurosci 10:844–852. doi:10.1016/S1474-4422(11)70176-4

    Google Scholar 

  26. Shahvaran Z, Kazemi K, Helfroush M (2015) Simultaneous vector-valued image segmentation and intensity nonuniformity correction using variational level set combined with Markov random field modeling. Signal Image Video 12:59–64

    Google Scholar 

  27. Shen S, Sandham W (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 9(3):459–467

    Article  PubMed  Google Scholar 

  28. Shenton ME, Kikinis R, Jolesz FA et al (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia: a quantitative magnetic resonance imaging study. N Engl J Med 327:604–612

    Article  CAS  PubMed  Google Scholar 

  29. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi:10.1002/hbm.10062

    Article  PubMed  Google Scholar 

  30. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. doi:10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  31. Tanabe JL, Amend D, Schuff N et al (1997) Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18:115–123

    CAS  PubMed  Google Scholar 

  32. Tuceryan M, Jain AK (1993) Texture analysis. Handb Pattern Recognit Comput Vis 2:207–248

    Google Scholar 

  33. Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26:405–421. doi:10.1109/TMI.2006.891486

    Article  PubMed  Google Scholar 

  34. Younis A, Ibrahim M, Kabuka M, John N (2008) An artificial immune-activated neural network applied to brain 3D MRI segmentation. J Digit Imaging 21:69–88. doi:10.1007/s10278-007-9081-0

    Article  Google Scholar 

  35. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi:10.1109/42.906424

    Article  CAS  PubMed  Google Scholar 

  36. Zhao M, Lin H, Yang C et al (2015) Automatic threshold level set model applied on MRI image segmentation of brain tissue. Appl Math Inf Sci 9(4):1971–1980

    Google Scholar 

Download references

Acknowledgments

The paper has been extracted from parts of the Saba Amiri M.Sc. thesis supported by the Research Council of Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Movahedi.

Appendices

Appendix 1: Statistical features

The statistical features consisting of mean, median, standard deviations, entropy, contrast, energy, correlation, and intensity of each voxel [4, 32] mentioned in Sect. 2.2 are detailed as follows:

  1. 1.

    Mean (μ) and standard deviation (σ) of voxel intensity features which in fact present the mean intensity and variation in intensity level of the voxels lied around a given voxel are calculated as:

    $$ \mu = \frac{1}{x + y + z}\sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {I(x,y,z)} } } $$
    (4)
    $$ \sigma = \sqrt {\frac{1}{x + y + z}\sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {(I(x,y,z) - \mu } } } )^{2} } $$
    (5)
  1. 2.

    Median is the numerical value separating the higher half of intensity from the lower half. The median can be found by arranging all the intensities from lowest value to highest value and picking the middle on.

  2. 3.

    Energy is the performance index for image uniformity that is a good quality to manifest the disorder and entropy in the image. If it grows to increase, it means that the intensity will be changed slightly.

    $$ {\text{Energy}} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {I(x,y,z)^{2} } } } $$
    (6)
  1. 4.

    Entropy is a measure of variability and for a fixed image is zero.

$$ {\text{Entropy}} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} { - I(x,y,z)\log (I(x,y,z))} } } $$
(7)
  1. 5.

    Contrast expresses the rate of local changes in the image. The high value of the contrast expresses the high local changes in the region of the interest. Contrast is the difference between the highest and the lowest values of a interconnected set of voxels.

$$ {\text{Contrast}} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {((x - y)(x - z)(y - z))^{2} I(x,y,z)} } } $$
(8)
  1. 6.

    Correlation is another parameter used to measure randomness in a given image. This parameter can also be used to estimate the similarity between a given voxel and other voxels of the image. Correlation is zero in random images.

$$ {\text{Correlation}} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {(x - \mu_{x} )(} } } y - \mu_{y} )(z - \mu_{z} )\frac{I(x,y,z)}{{\sigma_{x} \sigma_{y} \sigma_{z} }} $$
(9)
$$ \mu_{x} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {xI(x,y,z)} } } ,\,\mu_{y} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {yI(x,y,z)} } } ,\,\mu_{z} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {zI(x,y,z)} } } $$
(10)
$$ \sigma_{x} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {(x - \mu_{x} )^{2} I(x,y,z)} } } ,\,\sigma_{y} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {(y - \mu_{y} )^{2} I(x,y,z)} } } ,\,\sigma_{z} = \sum\limits_{x} {\sum\limits_{y} {\sum\limits_{z} {(z - \mu_{z} )^{2} I(x,y,z)} } } $$

Appendix 2: Geometric moments features

For non-statistical feature, the geometric moments are calculated and employed [18, 22, 24]. In general, the geometric moment of order (p + q + r) of image I(x, y, z) is given by:

$$ m_{pqr} = \sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{N - 1} {\sum\limits_{z = 0}^{L - 1} {x^{p} y^{q} z^{r} I(x,y,z)} } } ,\quad p,q,r = 1,2, \ldots $$
(11)

where M, N, and L are image dimensions.

By using equation (12), geometrical central moments of order equal to (p + q + r) can be computed.

$$ \mu_{pqr} = \sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{N - 1} {\sum\limits_{z = 0}^{L - 1} {(x - \bar{x})^{p} (y - \bar{y})^{q} (z - \bar{z})^{r} I(x,y,z)} } ,\quad p,q,r = 1,2, \ldots } $$
(12)

where \( \bar{x} \), \( \bar{y} \), and \( \bar{z} \) are gravity center of image and are calculated as follows:

$$ \bar{x} = \frac{{m_{100} }}{{m_{000} }}; \quad \bar{y} = \frac{{m_{010} }}{{m_{000} }};\,\,\,\,\bar{z} = \frac{{m_{001} }}{{m_{000} }} $$
(13)
$$ m_{pqr} = \sum\limits_{x = 0}^{M - 1} {\sum\limits_{y = 0}^{N - 1} {\sum\limits_{z = 0}^{L - 1} {(x)^{p} (y)^{q} (z)^{r} I(x,y,z)} } } $$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, S., Movahedi, M.M., Kazemi, K. et al. 3D cerebral MR image segmentation using multiple-classifier system. Med Biol Eng Comput 55, 353–364 (2017). https://doi.org/10.1007/s11517-016-1483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1483-z

Keywords

Navigation