Log in

Novel SPP Nanolaser with Two Modes of Electromagnetic for Optoelectronic Integration Device

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon polariton (SPP) nanolaser, which can achieve all-optical circuits, is a major research topic in the field of micro light source. In this work, we proposed a novel double-mode SPP nanolaser which is consisted of InGaAsP high-index dielectric, Ag metal, and T-shape MgF2 low-index dielectric. The best performances of the proposed waveguide can be obtained in the conditions of λ = 675 nm, R = 70 nm, Gap = 3 nm, and w = 2 nm, which is corresponded the incident wavelength, radius of nanowires, gap, and width, respectively. In that conditions, the mode area and threshold can be reached at 0.05 λ2 and 1.23 × 104 cm−1. Furthermore, the propagation distance and the confinement factor can reach 1200 nm and 0.33, respectively. It shows that the proposed device has significant potential in ultrahigh density plasmonic and photonic integrated circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13(19):1501–1505

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  4. Oulton RF, Sorger VJ, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  5. Crosnier G, Sanchez D, Bouchoule S, Monnier P, Beaudoin G, Sagnes I, Raj R, Raineri F (2017) Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photonics 11:297–300

    Article  CAS  Google Scholar 

  6. Liu X, Gao J, Yang H, Wang X, Tian S, Guo C (2017) Hybrid plasmonic modes in multilayer trench grating structures. Adv Opt Mater 5(22):1–8

    Google Scholar 

  7. Bermúdez-Ureña E, Tutuncuoglu G, Cuerda J, Smith CLC, Bravo-Abad J, Bozhevolnyi SI, Fontcuberta i Morral A, García-Vidal FJ, Quidant R (2017) Plasmonic waveguide-integrated nanowire laser. Nano Lett 17(2):747–754

    Article  CAS  Google Scholar 

  8. Bian Y, Zheng Z, Liu Y, Zhu J, Zhou T (2011) Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides. IEEE Photon Technol Lett 23(13):884–886

    Article  CAS  Google Scholar 

  9. Plotz GA, Simon HJ, Tucciarone JM (1979) Enhanced total reflection with surface plasmons. J Opt Soc Am 69(3):419–422

    Article  Google Scholar 

  10. Zhang L, Lu X, Gong Y, Copner N, Zhao W, Wang G, Zhang W (2015) Low-loss slow-light in periodic plasmonic waveguides. IEEE Photon Technol Lett 27(11):1208–1211

    Article  Google Scholar 

Download references

Funding

This work was supported by supported by the Guangxi Natural Science Foundation (2017GXNSFAA198261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Xu, Z. Novel SPP Nanolaser with Two Modes of Electromagnetic for Optoelectronic Integration Device. Plasmonics 14, 1295–1302 (2019). https://doi.org/10.1007/s11468-019-00919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00919-8

Keywords

Navigation