Log in

Drought tolerance evaluation of tobacco plants transformed with different set of genes under laboratory and field conditions

对两类转基因烟草在实验和田间环境下的抗旱比较研究

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Although extensive studies have demonstrated that many drought-responsive genes confer drought tolerance to plants, comparisons of the drought tolerance capabilities conferred by different genes under various natural conditions have seldom been reported. We evaluated and compared the effects of two sets of transgenes, the drought-responsive genes (AtDREB1B and AtCBL1) and the root architecture-regulated genes (iaaM and AtCKX), on drought tolerance in Nicotiana tabacum plants subjected to different conditions. The expression of AtCKX3 driven by a root-specific promoter PYK10 (designated hereafter as P10; P10:AtCKX3), 35S:AtCKX3, or P10:iaaM promoted root growth and development. Compared to plants harboring P10:AtCKX3, 35S:AtCKX3, P10:iaaM, or the empty vector, those carrying 35S:AtDREB1B, 35S:AtCBL1, or 35S:iaaM exhibited increased drought tolerance under laboratory-controlled conditions. Conversely, in field conditions, plants transformed with 35S:AtDREB1, 35S:AtCBL1, or 35S:iaaM were sensitive to drought stress. Under field conditions, drought stress dramatically reduced the growth and seed production of plants harboring 35S:AtDREB1B, 35S:AtCBL1, 35S:iaaM, or the empty vector, whereas it had little effect on plants carrying P10:AtCKX3, 35S:AtCKX3, or P10:iaaM. This study demonstrates that a plant’s tolerance to drought stress changes with environmental conditions, and our results indicates that manipulating the expression of genes that control root architecture may be important for engineering plants with improved drought tolerance in natural conditions.

摘要

尽管干旱应答基因在植物抗旱中的功能已得到广泛认可,但对不同基因在不同条件下对植物抗旱的贡献至今没有系统的比较和研究报道。本研究以转基因烟草为实验材料,对两类不同的基因,即干旱应答基因(如AtDREB1BAtCBL1)及根系形态建成调节基因(如iaaMAtCKX3)的抗旱贡献能力进行了比较研究。我们用根系特异启动子PYK10 (P10)驱动AtCKX3,以及35S:AtCKX3和 P10:iaaM进行烟草转化,表明能明显促进转基因植株的根系生长和发育。虽然干旱应答基因(35S:AtDREB1B,35S:AtCBL1)以及35S:iaaM的转化植株在实验室可控条件下抗旱性明显提高,但是在田间条件下,这些转化植株对干旱胁迫却变得敏感。而根系形态建成调节基因(P10:AtCKX3,35S:AtCKX3,P10:iaaM)的转基因植株虽然在实验室环境下不表现抗旱,但在田间条件下能耐受干旱。该研究证明转基因植物的抗旱性会随着环境变化而改变,在田间自然条件下,操纵植物根系生长的基因对提高植物抗旱性更加重要。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  Google Scholar 

  2. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  Google Scholar 

  3. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  Google Scholar 

  4. Umezawa T, Nakashima K, Miyakawa T et al (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  Google Scholar 

  5. Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  Google Scholar 

  6. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  Google Scholar 

  7. **ong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

  8. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Physiol Plant Mol Biol 57:781–803

    Article  Google Scholar 

  9. Harb A, Krishnan A, Ambavaram MMR et al (2010) Molecular and physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  Google Scholar 

  10. Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  Google Scholar 

  11. Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  Google Scholar 

  12. Urano K, Kurihara Y, Seki M et al (2010) “Omics” analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

  13. Saijo Y, Hata S, Kyozuka J et al (2000) Over-expression of a signle Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  Google Scholar 

  14. Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  Google Scholar 

  15. Umezawa T, Yoshida R, Maruyama K et al (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    Article  Google Scholar 

  16. Tran L-SP, Urao T, Qin F et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    Article  Google Scholar 

  17. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Physiol 61:443–462

    Google Scholar 

  18. Ning J, Li X, Hicks LM et al (2010) A Raf-Like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

  19. Osakabe Y, Mizuno S, Tanaka H et al (2010) Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem 285:9190–9201

    Article  Google Scholar 

  20. Ouyang S, Liu Y, Liu P et al (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  Google Scholar 

  21. Huang X, Luo T, Fu X et al (2011) Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot 62:5191–5206

    Article  Google Scholar 

  22. Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  Google Scholar 

  23. Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  Google Scholar 

  24. Qin F, Kakimoto M, Sakuma Y et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  Google Scholar 

  25. Zhao J, Ren W, Zhi D et al (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528

    Article  Google Scholar 

  26. Chen J, Meng X, Zhang Y et al (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  Google Scholar 

  27. Wang Q, Guan Y, Wu Y et al (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  Google Scholar 

  28. Agarwal P, Agarwal PK, Joshi AJ et al (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  Google Scholar 

  29. Zhao L, Hu Y, Chong K et al (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot 105:401–440

    Article  Google Scholar 

  30. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotech Prog 27:297–306

    Article  Google Scholar 

  31. Li M, Li Y, Li H et al (2011) Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiol 32:104–113

    Article  Google Scholar 

  32. Cui M, Zhang W, Zhang Q et al (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Bioch 49:1384–1391

    Article  Google Scholar 

  33. Mallikarjuna G, Mallikarjuna K, Reddy MK et al (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotech Lett 33:1689–1697

    Article  Google Scholar 

  34. Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230–249

    Article  Google Scholar 

  35. Cheong YH, Kim KN, Pandey GK et al (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  Google Scholar 

  36. Shi J, Kim KN, Ritz O et al (1999) Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11:2393–2405

    Article  Google Scholar 

  37. Albrecht V, Ritz O, Linder S et al (2001) The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051–1063

    Article  Google Scholar 

  38. Luan S, Kudla J, Rodriguez-Concepcion M et al (2002) Calmodulins and calcinenrin B-like protein: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    Google Scholar 

  39. Li Y, Feng D, Zhang D et al (2012) Rice MAPK phosphatase IBR5 negatively regulates drought stress tolerance in transgenic Nicotiana tabacum. Plant Sci 188–189:10–18

    Article  Google Scholar 

  40. **ang Y, Huang Y, **ong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  Google Scholar 

  41. Ghanem ME, Hichri I, Smigock AC et al (2011) Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep 30:807–823

    Article  Google Scholar 

  42. Havlova M, Dobrev P, Motyka V et al (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353

    Article  Google Scholar 

  43. Werner T, Nehnevajova E, Köllmer I et al (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  Google Scholar 

  44. Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in cree** bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333

    Article  Google Scholar 

  45. Nishiyama R, Watanabe Y, Fujita Y et al (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  Google Scholar 

  46. Yu L, Chen X, Wang Z et al (2013) Arabidopsis EDT1/HDG11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  Google Scholar 

  47. Werner T, Motyka V, Laucou V et al (2003) Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  Google Scholar 

  48. Bishopp A, Benkova E, Helariutta Y (2011) Sending mixed messages: auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

    Article  Google Scholar 

  49. Durbak A, Yao H, McSteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96

    Article  Google Scholar 

  50. Sitbon F, Hennion S, Sundberg B et al (1992) Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99:1062–1069

  51. Nitz I, Berkefeld H, Puzio PS et al (2001) P10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci 161:337–346

    Article  Google Scholar 

  52. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  Google Scholar 

  53. Sillclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:329–341

    Article  Google Scholar 

  54. Fennell A, Markhart AH (1998) Rapid acclimation of root hydraulic conductivity to low temperature. J Exp Bot 49:879–884

    Article  Google Scholar 

  55. Morison JI, Baker NR, Mullineaux PM et al (2008) Improving water use in crop production. Philos Trans R Soc B 363:639–658

    Article  Google Scholar 

  56. Sakuma Y, Maruyama K, Osakabe Y et al (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

  57. Catala R, Ouyang J, Abreu IA et al (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

  58. Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  Google Scholar 

  59. Yu H, Chen X, Hong YY et al (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

  60. Bohnert HJ, Sheveleva E (1998) Plant stress adaptations-making metabolism move. Curr Opin Plant Biol 1:267–274

    Article  Google Scholar 

  61. Hachez C, Chaumont F (2010) Aquaporins: a family of highly regulated multifunctional channels. Adv Exp Med Biol 679:1–17

    Article  Google Scholar 

  62. Peleg Z, Reguera M, Tumimbang E et al (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31171921, 31101527 and 31471851), the National High Technology Research and Development Program of China (2011AA100204) and Doctoral Fund of Ministry of Education of China (20110008120024).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingbing Li or Wensuo Jia.

Additional information

Yuanhua Wang, Ruihong Dang and **xi Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3921 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dang, R., Li, J. et al. Drought tolerance evaluation of tobacco plants transformed with different set of genes under laboratory and field conditions. Sci. Bull. 60, 616–628 (2015). https://doi.org/10.1007/s11434-015-0748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0748-5

Keywords

Keywords

Navigation