Log in

Phase field modeling of ferroelastic variant switching in yttria-stabilized t′zirconia with strain gradient elasticity and interface tension

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The 6–8 wt% yttria-stabilized zirconia with a tetragonal structure (t′-YSZ) is extensively employed in thermal barrier coatings. The exceptional fracture toughness of t′-YSZ can be attributed to its distinctive ferroelastic toughening mechanism. Micro-structure and interface tension play a critical role in ferroelastic variant switching at the micro- and nano-scale. This paper presents an original thermodynamically consistent phase field (PF) theory for analyzing ferroelastic variant switching at the micro- and nano-scale of t′-YSZ. The theory incorporates strain gradient elasticity using higher-order elastic energy and interface tension tensor via geometric nonlinearity to represent biaxial tension resulting from interface energy. Subsequently, a mixed-type formulation is employed to implement the higher-order theory through the finite element method. For an interface in equilibrium, the effects of strain gradient elasticity result in a more uniform distribution of stresses, whereas the presence of interface tension tensor significantly amplifies the stress magnitude at the interface. The introduction of an interface tension tensor increases the maximum value of stress at the interface by a factor of 4 to 10. The nucleation and evolution of variants at a pre-existing crack tip in a mono-phase t′-YSZ have also been studied. The strain gradient elasticity is capable of capturing the size effect of ferroelastic variant switching associated with microstructures in experiments. Specifically, when the grain size approaches that of the specimen, the critical load required for variant switching at the crack tip increases, resulting in greater dissipation of elastic energy during ferroelastic variant switching. Moreover, the interface tension accelerates the evolution of variants. The presented framework exhibits significant potential in modeling ferroelastic variant switching at the micro- and nano-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci, 2001, 46: 505–553

    Article  Google Scholar 

  2. Padture N P. Advanced structural ceramics in aerospace propulsion. Nat Mater, 2016, 15: 804–809

    Article  Google Scholar 

  3. Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296: 280–284

    Article  Google Scholar 

  4. Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Sci Tech, 2003, 7: 73–80

    Article  Google Scholar 

  5. Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res, 2003, 33: 383–417

    Article  Google Scholar 

  6. Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull, 2012, 37: 891–898

    Article  Google Scholar 

  7. Chen X, Wang R, Yao N, et al. Foreign object damage in a thermal barrier system: Mechanisms and simulations. Mater Sci Eng-A, 2003, 352: 221–231

    Article  Google Scholar 

  8. Wang Y, Yang H, Liu R, et al. Ferroelastic domain switching toughening in spark plasma sintered t′-yttria stabilized zirconia/La2Zr2O7 composite ceramics. Ceramics Int, 2017, 43: 13020–13024

    Article  Google Scholar 

  9. Li J, Zhou Q, Yang L, et al. Ferroelastic deformation mechanism and mechanical properties of [001]-oriented YSZ film by indentation. J Alloys Compd, 2021, 889: 161557

    Article  Google Scholar 

  10. Zeng Z, Liu Y, Zhang Y, et al. Ferroelastic domain switching toughening in Ce-Y-La co-stabilized zirconia ceramics obtained from coated starting powders. J Alloys Compd, 2020, 820: 153177

    Article  Google Scholar 

  11. Srinivasan G V, Jue J F, Kuo S Y, et al. Ferroelastic domain switching in polydomain tetragonal zirconia single crystals. J Am Ceramic Soc, 1989, 72: 2098–2103

    Article  Google Scholar 

  12. Zhu J, Xu J, Zhang P, et al. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates. Scripta Mater, 2021, 200: 113912

    Article  Google Scholar 

  13. Salje E. Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics, 1990, 104: 111–120

    Article  Google Scholar 

  14. Schulz U, Terry S G, Levi C G. Microstructure and texture of EB-PVD TBCs grown under different rotation modes. Mater Sci Eng-A, 2003, 360: 319–329

    Article  Google Scholar 

  15. Virkar A V, Matsumoto R L K. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceramic Soc, 1986, 69: 224–226

    Article  Google Scholar 

  16. Evans A G, Heuer A H. Review—Transformation toughening in ceramics: Martensitic transformations in crack-tip stress fields. J Am Ceramic Soc, 1980, 63: 241–248

    Article  Google Scholar 

  17. Ma L. Fundamental formulation for transformation toughening. Int J Solids Struct, 2010, 47: 3214–3220

    Article  Google Scholar 

  18. Mercer C, Williams J R, Clarke D R, et al. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proc R Soc A, 2007, 463: 1393–1408

    Article  Google Scholar 

  19. Wang J, Zhang T Y. Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater, 2007, 55: 2465–2477

    Article  Google Scholar 

  20. Sun Y, Luo J, Zhu J. Ferroelastic toughening of single crystalline yttria-stabilized t′ zirconia: A phase field study. Eng Fract Mech, 2020, 233: 107077

    Article  Google Scholar 

  21. Pi Z P, Wang K L, Yang L, et al. On the theoretical and phase field modeling of the stress state associated with ferroelastic twin nucleation and propagation near crack tip. Eng Fract Mech, 2020, 235: 107200

    Article  Google Scholar 

  22. Smith C S. Multiscale characterization of ferroelastic deformation in ceramic materials. Dissertation for Doctoral Degree. Urbana and Champaign: University of Illinois at Urbana-Champaign, 2020

    Google Scholar 

  23. Zhou Q Q, Yang L, Luo C, et al. Thermal barrier coatings failure mechanism during the interfacial oxidation process under the interaction between interface by cohesive zone model and brittle fracture by phase-field. Int J Solids Struct, 2021, 214–215: 18–34

    Article  Google Scholar 

  24. Peerlings R H J, Fleck N A. Computational evaluation of strain gradient elasticity constants. Int J Mult Comp Eng, 2004, 2: 599–620

    Article  Google Scholar 

  25. Smyshlyaev V P, Cherednichenko K D. On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J Mech Phys Solids, 2000, 48: 1325–1357

    Article  MathSciNet  Google Scholar 

  26. Li J. A micromechanics-based strain gradient damage model for fracture prediction of brittle materials–Part I: Homogenization methodology and constitutive relations. Int J Solids Struct, 2011, 48: 3336–3345

    Article  Google Scholar 

  27. Li J, Pham T, Abdelmoula R, et al. A micromechanics-based strain gradient damage model for fracture prediction of brittle materials–Part II: Damage modeling and numerical simulations. Int J Solids Struct, 2011, 48: 3346–3358

    Article  Google Scholar 

  28. Toupin R A. Elastic materials with couple-stresses. Arch Rational Mech Anal, 1962, 11: 385–414

    Article  MathSciNet  Google Scholar 

  29. Toupin R A. Theories of elasticity with couple-stress. Arch Rational Mech Anal, 1964, 17: 85–112

    Article  MathSciNet  Google Scholar 

  30. Mindlin R D, Eshel N N. On first strain-gradient theories in linear elasticity. Int J Solids Struct, 1968, 4: 109–124

    Article  Google Scholar 

  31. Mindlin R D. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct, 1965, 1: 417–438

    Article  Google Scholar 

  32. Mindlin R D. Micro-structure in linear elasticity. Arch Rational Mech Anal, 1964, 16: 51–78

    Article  MathSciNet  Google Scholar 

  33. Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids, 2003, 51: 1477–1508

    Article  Google Scholar 

  34. Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity. Int J Solids Struct, 2002, 39: 2731–2743

    Article  Google Scholar 

  35. Ru C Q, Aifantis E C. A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech, 1993, 101: 59–68

    Article  MathSciNet  Google Scholar 

  36. Aifantis E C. Update on a class of gradient theories. Mech Mater, 2003, 35: 259–280

    Article  Google Scholar 

  37. Askes H, Aifantis E C. Gradient elasticity in statics and dynamics: An overview offormulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct, 2011, 48: 1962–1990

    Article  Google Scholar 

  38. Liu Y W, Zhang S Y, Long H, et al. Trans-scale surface wrinkling model and scaling relationship analysis of stiff film-compliant substrate structures. Sci China Tech Sci, 2022, 65: 2776–2786

    Article  Google Scholar 

  39. Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids, 1998, 46: 411–425

    Article  Google Scholar 

  40. Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity? I. Theory. J Mech Phys Solids, 1999, 47: 1239–1263

    Article  MathSciNet  Google Scholar 

  41. Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids, 2000, 48: 99–128

    Article  MathSciNet  Google Scholar 

  42. Huang Y, Qu S, Hwang K C, et al. A conventional theory of mechanism-based strain gradient plasticity. Int J Plast, 2004, 20: 753–782

    Article  Google Scholar 

  43. Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids, 1993, 41: 1825–1857

    Article  MathSciNet  Google Scholar 

  44. Hutchinson J, Fleck N. Strain gradient plasticity. Adva Appl Mech, 1997, 33: 295–361

    Article  Google Scholar 

  45. Wei Y, Hutchinson J W. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J Mech Phys Solids, 1997, 45: 1253–1273

    Article  MathSciNet  Google Scholar 

  46. Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity. J Mech Phys Solids, 2001, 49: 2245–2271

    Article  Google Scholar 

  47. Gurtin M E. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids, 2002, 50: 5–32

    Article  MathSciNet  Google Scholar 

  48. Gudmundson P. A unified treatment of strain gradient plasticity. J Mech Phys Solids, 2004, 52: 1379–1406

    Article  MathSciNet  Google Scholar 

  49. Sang M S, Chen Y X, Jiang W J, et al. Damage and fracture with strain gradient plasticity for high-capacity electrodes of Li-ion batteries. Sci China Tech Sci, 2021, 64: 1575–1582

    Article  Google Scholar 

  50. Porter D A, Easterling K E. Phase Transformations in Metals and Alloys (Revised Reprint). Boca Raton: CRC Press, 2009

    Google Scholar 

  51. Levitas V I. Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater, 2013, 61: 4305–4319

    Article  Google Scholar 

  52. Levitas V I, Warren J A. Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses. Phys Rev B, 2015, 92: 144106

    Article  Google Scholar 

  53. Levitas V I. Phase field approach to martensitic phase transformations with large strains and interface stresses. J Mech Phys Solids, 2014, 70: 154–189

    Article  MathSciNet  Google Scholar 

  54. Levitas V I, Javanbakht M. Surface tension and energy in multivariant martensitic transformations: Phase-field theory, simulations, and model of coherent interface. Phys Rev Lett, 2010, 105: 165701

    Article  Google Scholar 

  55. Pi Z P, Zhang F, Chen J B, et al. Multiphase field theory for ferroelastic domain switching with an application to tetragonal zirconia. Comput Mater Sci, 2019, 170: 109165

    Article  Google Scholar 

  56. Khakalo S, Laukkanen A. Strain gradient elasto-plasticity model: 3D isogeometric implementation and applications to cellular structures. Comput Methods Appl Mech Eng, 2022, 388: 114225

    Article  MathSciNet  Google Scholar 

  57. Zhou Q, Wei Y, Zhou Y, et al. A thermodynamically consistent phase-field regularized cohesive fracture model with strain gradient elasticity and surface stresses. Eng Fract Mech, 2022, 273: 108760

    Article  Google Scholar 

  58. Levitas V I, Jafarzadeh H, Farrahi G H, et al. Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int J Plast, 2018, 111: 1–35

    Article  Google Scholar 

  59. Zhou Q Q, Yang L, Nie M, et al. A chemo-thermo-mechanically constitutive theory of high-temperature interfacial oxidation in alloys under deformation. Sci China Tech Sci, 2023, 66: 1018–1037

    Article  Google Scholar 

  60. Gitman I M, Askes H, Aifantis E C. The representative volume size in static and dynamic micro-macro transitions. Int J Fract, 2005, 135: L3–L9

    Article  Google Scholar 

  61. Levitas V I, Preston D L, Lee D W. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B, 2003, 68: 134201

    Article  Google Scholar 

  62. Levitas V I, Samani K. Size and mechanics effects in surface-induced melting of nanoparticles. Nat Commun, 2011, 2: 1–6

    Article  Google Scholar 

  63. Shu J Y, King W E, Fleck N A. Finite elements for materials with strain gradient effects. Int J Numer Meth Engng, 1999, 44: 373–391

    Article  Google Scholar 

  64. Schelling P K, Phillpot S R, Wolf D. Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J Am Ceramic Soc, 2001, 84: 1609–1619

    Article  Google Scholar 

  65. Baither D, Bartsch M, Baufeld B, et al. Ferroelastic and plastic deformation of t′-zirconia single crystals. J Am Ceramic Soc, 2001, 84: 1755–1762

    Article  Google Scholar 

  66. Evans A G, Burlingame N, Drory M, et al. Martensitic transformations in zirconia—Particle size effects and toughening. Acta Metall, 1981, 29: 447–456

    Article  Google Scholar 

  67. Ball J M, James R D. Fine phase mixtures as minimizers of energy. In: Analysis and Continuum Mechanics. Berlin, Heidelberg: Springer, 1989. 647–686

    Chapter  Google Scholar 

  68. Bhattacharya K. Wedge-like microstructure in martensites. Acta Metall Mater, 1991, 39: 2431–2444

    Article  Google Scholar 

  69. Bhattacharya K. Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum Mech Thermodyn, 1993, 5: 205–242

    Article  MathSciNet  Google Scholar 

  70. Zhang B, Luo J. A phase field model for fracture based on the strain gradient elasticity theory with hybrid formulation. Eng Fract Mech, 2021, 256: 107975

    Article  Google Scholar 

  71. Rao Y, **ang M, Cui J. A strain gradient brittle fracture model based on two-scale asymptotic analysis. J Mech Phys Solids, 2022, 159: 104752

    Article  MathSciNet  Google Scholar 

  72. Chan C J, Lange F F, Rühle M, et al. Ferroelastic domain switching in tetragonal zirconia single crystals—Microstructural aspects. J Am Ceramic Soc, 1991, 74: 807–813

    Article  Google Scholar 

  73. Neumeister P, Kessler H, Balke H. Effect of switching stresses on domain evolution during quasi-static crack growth in a ferroelastic single crystal. Acta Mater, 2010, 58: 2577–2584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YueGuang Wei or Li Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11890684, 12032001 & 51590891), the Technology Innovation Leading Program ofShaanxi (Grant No. 2022TD-28), and Hunan Provincial Natural Science Innovation Research Group Fund (Grant No. 2020JJ1005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wei, Y., Zhou, Y. et al. Phase field modeling of ferroelastic variant switching in yttria-stabilized t′zirconia with strain gradient elasticity and interface tension. Sci. China Technol. Sci. 67, 1443–1457 (2024). https://doi.org/10.1007/s11431-022-2486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2486-x

Navigation