Log in

Rheology of continental lithosphere and seismic anisotropy

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Rheology of rocks controls the deformation of the Earth at various space-time scales, which is crucial to understand the tectonic evolution of continental lithosphere. Researches of rock rheology are mainly conducted via high-pressure and high-temperature rheological experiments and multi-scale observations and measurements of naturally deformed rocks. At present, a large amount of data from such kinds of studies have been accumulated. This paper first provides an up-to-date comprehensive review of the rheological mechanisms, fabric types and seismic properties of the main rock-forming minerals at different depths of continental lithosphere, including olivine, orthopyroxene, clinopyroxene, amphibole, plagioclase, quartz and mica. Then, progress in high-pressure and high-temperature experiments and natural deformation observations is introduced, mainly regarding the rheological strength and behavior, seismic velocity and anisotropy of lithospheric mantle peridotite, eclogite, mafic granulite, amphibolite and felsic rocks. Finally, by taking the Tibetan Plateau as an example, the application of rock rheology for quantitative interpretation of seismic anisotropy data is discussed. The combination of mineral deformation fabrics and seismic anisotropy is expected to make an important breakthrough in understanding the rheological properties and structure of continental lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ábalos B. 1997. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): Relationships with strain symmetry during high-pressure deformation. J Struct Geol, 19: 621–637

    Article  Google Scholar 

  • Abers G A, Hacker BR. 2016. A MATLAB toolbox and excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst, 17: 616–624

    Article  Google Scholar 

  • Abramson E H, Brown J M, Slutsky L J, Zaug J M. 1997. The elastic constants of San Carlos olivine to 17 GPa. J Geophys Res, 102: 12253–12263

    Article  Google Scholar 

  • Aleksandrov K S, Ryzhova T V. 1961. The elastic properties of rock-forming minerals, I: Pyroxenes and amphiboles. Bull Academy of Sci USSR: Geophy Ser, 871–875, 1339–1344

    Google Scholar 

  • Aleksandrov K, Alchikov U, Belikov B, Zaslavskii B, Krupnyi A. 1974. Velocities of elastic waves in minerals at atmospheric pressure and increasing precision of elastic constants by means of EVM. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 10: 15–24

    Google Scholar 

  • Allard M, Ildefonse B, Oliot É, Barou F. 2021. Plastic deformation of plagioclase in oceanic gabbro accreted at a slow-spreading ridge (Hole U1473A, Atlantis Bank, Southwest Indian Ridge). J Geophys Res-Solid Earth, 126: e2021JB021964

    Article  Google Scholar 

  • Almqvist B S, Mainprice D. 2017. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Rev Geophys, 55: 367–433

    Article  Google Scholar 

  • Avé Lallemant H G. 1978. Experimental deformation of diopside and websterite. Tectonophysics, 48: 1–27

    Article  Google Scholar 

  • Backus G E. 1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J Geophys Res, 70: 3429–3439

    Article  Google Scholar 

  • Bascou J, Barruol G, Vauchez A, Mainprice D, Egydio-Silva M. 2001. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 342: 61–80

    Article  Google Scholar 

  • Bascou J, Tommasi A, Mainprice D. 2002. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J Struct Geol, 24: 1357–1368

    Article  Google Scholar 

  • Benn K, Allard B. 1989. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. J Petrol, 30: 925–946

    Article  Google Scholar 

  • Bhagat S S, Bass J D, Smyth J R. 1992. Single-crystal elastic properties of omphacite-C2/c by Brillouin spectroscopy. J Geophys Res, 97: 6843–6848

    Article  Google Scholar 

  • Birch F. 1960. The velocity ofcompressional waves in rocks to 10 kilobars: 1. J Geophys Res, 65: 1083–1102

    Article  Google Scholar 

  • Boland J N, Tullis T E. 1986. Deformation behavior of wet and dry clinopyroxenite in the brittle to ductile transition region. In: Hobbs B E, Heard H C, eds. Mineral and Rock Deformation: Laboratories Studies. The Paterson Volume. Geophys Monogr, 36: 35–49

    Google Scholar 

  • Boudier F, Baronnet A, Mainprice D. 2010. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. J Petrol, 51: 495–512

    Article  Google Scholar 

  • Boundy T M, Fountain D M, Austrheim H. 1992. Structural development and petrofabrics of eclogite facies shear zones, Bergen Arcs, western Norway: Implications for deep crustal deformational processes. J Metamorph Geol, 10: 127–146

    Article  Google Scholar 

  • Brenker F E, Prior D J, Müller W F. 1999. Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation. In: Dresen G, Handy M, Janssen C, eds. International Conference on Deformation Mechanisms, Rheology and Microstructures, Neustadt an der Weinstrasse. 11

  • Brenker F E. 1998. Mikrogefügethermochronometrie für Eklogite. Dissertation for Doctoral Degree. Frankfurt am Main: J.W. Goethe Universität

    Google Scholar 

  • Bromiley G D, Pawley A R. 2003. The stability of antigorite in the systems MgO-SiO2-H2O(MSH) and MgO-Al2O3-SiO2-H2O(MASH): The effects of Al3+ substitution on high-pressure stability. Am Mineral, 88: 99–108

    Article  Google Scholar 

  • Brownlee S J, Hacker B R, Salisbury M, Seward G, Little T A, Baldwin S L, Abers G A. 2011. Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh-pressure terrane. J Geophys Res, 116: B08206

    Article  Google Scholar 

  • Buatier M, van Roermund H L M, Drury M R, Lardeaux J M. 1991. Deformation and recrystallization mechanisms in naturally deformed omphacites from the Sesia-Lanzo zone; geophysical consequences. Tectonophysics, 195: 11–27

    Article  Google Scholar 

  • Bürgmann R, Dresen G. 2008. Rheology of the Lower Crust and Upper Mantle: Evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci, 36: 531–567

    Article  Google Scholar 

  • Burov E B, Watts A B. 2006. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brû lée”? GSA Today, 16: 4

    Article  Google Scholar 

  • Bystricky M, Kunze K, Burlini L, Burg J P. 2000. High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 290: 1564–1567

    Article  Google Scholar 

  • Cao S Y, Liu J L, Leiss B. 2010. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China. J Struct Geol, 32: 606–622

    Article  Google Scholar 

  • Cao Y, Du J, Jung H, Jung S, Lee J, Park M, Kim J. 2021. Crystal preferred orientations, deformation mechanisms and seismic properties of high pressure metamorphic rocks from the Central Qiangtang metamorphic belt, Tibetan Plateau. J Struct Geol, 145: 104309

    Article  Google Scholar 

  • Cao Y, Du J, Park M, Jung S, Park Y, Kim D, Choi S, Jung H, Austrheim H. 2020. Metastability and nondislocation-based deformation mechanisms of the Flem eclogite in the Western Gneiss Region, Norway. J Geophys Res-Solid Earth, 125: e2020JB019375

    Article  Google Scholar 

  • Carter N L, Avé Lallemant H G. 1970. High temperature flow of dunite and peridotite. GSA Bull, 81: 2181–2202

    Article  Google Scholar 

  • Chai M, Brown J M, Slutsky L J. 1997. The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J Geophys Res, 102: 14779–14785

    Article  Google Scholar 

  • Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the Southern segment of the north-south tectonic belt in China (in Chinese with English abstract). Chin J Geophys, 58: 4052–4067

    Google Scholar 

  • Chang L J, Flesch L M, Wang C, Ding Z F. 2015. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophys Res Lett, 42: 5813–5819

    Article  Google Scholar 

  • Chen S, Hiraga T, Kohlstedt D L. 2006. Water weakening of clinopyroxene in the dislocation creep regime. J Geophys Res, 111: B08203

    Article  Google Scholar 

  • Christensen N I, Lundquist S M. 1982. Pyroxene orientation within the upper mantle. GSA Bull, 93: 279–288

    Article  Google Scholar 

  • Christie J M, Heard H C, LaMori P N. 1964. Experimental deformation of quartz single crystals at 27 to 30 kilobars confining pressure and 24°C. Am J Sci, 262: 26–55

    Article  Google Scholar 

  • Christoffersen R, Kronenberg A K. 1993. Dislocation interactions in experimentally deformed biotite. J Struct Geol, 15: 1077–1095

    Article  Google Scholar 

  • Cooper R F, Kohlstedt D L. 1986. Rheology and structure ofolivine-basalt partial melts. J Geophys Res, 91: 9315–9323

    Article  Google Scholar 

  • Couvy H, Frost D J, Heidelbach F, Nyilas K, Ungar T, Mackwell S, Cordier P. 2004. Shear deformation experiments of forsterite at 11 GPa-1400°C in the multianvil apparatus. Eur J Mineral, 16: 877–889

    Article  Google Scholar 

  • Crampin S, Booth D C. 1985. Shear-wave polarizations near the North Anatolian Fault—II. Interpretation in terms of crack-induced anisotropy. Geophys J Int, 83: 75–92

    Article  Google Scholar 

  • Cross A J, Skemer P. 2017. Ultramylonite generation via phase mixing in high-strain experiments. J Geophys Res-Solid Earth, 122: 1744–1759

    Article  Google Scholar 

  • Cross A J, Olree E, Couvy H, Skemer P. 2020. How does viscosity contrast influence phase mixing and strain localization? J Geophys Res-Solid Earth, 125: e2020JB020323

    Article  Google Scholar 

  • Davis P B, Whitney D L. 2008. Petrogenesis and structural petrology of high-pressure metabasalt pods, Sivrihisar, Turkey. Contrib Mineral Petrol, 156: 217–241

    Article  Google Scholar 

  • Díaz Aspiroz M, Lloyd G E, Fernández C. 2007. Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions. A SEM/EBSD study of metabasites from the Aracena metamorphic belt (SW Spain). J Struct Geol, 29: 629–645

    Article  Google Scholar 

  • Dimanov A, Dresen G, Wirth R. 1998. High-temperature creep of partially molten plagioclase aggregates. J Geophys Res, 103: 9651–9664

    Article  Google Scholar 

  • Dimanov A, Dresen G, **ao X, Wirth R. 1999. Grain boundary diffusion creep of synthetic anorthite aggregates: The effect of water. J Geophys Res, 104: 10483–10497

    Article  Google Scholar 

  • Dimanov A, Dresen G. 2005. Rheology of synthetic anorthite-diopside aggregates: Implications for ductile shear zones. J Geophys Res, 110: B07203

    Article  Google Scholar 

  • Dimanov A, Lavie M P, Dresen G, Ingrin J, Jaoul O. 2003. Creep of polycrystalline anorthite and diopside. J Geophys Res, 108: 2061

    Article  Google Scholar 

  • Dimanov A, Raphanel J, Dresen G. 2011. Newtonian flow of heterogeneous synthetic gabbros at high strain: Grain sliding, ductile failure, and contrasting local mechanisms and interactions. Eur J Mineral, 23: 303–322

    Article  Google Scholar 

  • Dimanov A, Rybacki E, Wirth R, Dresen G. 2007. Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates. J Struct Geol, 29: 1049–1069

    Article  Google Scholar 

  • Dimanov A, Wirth R, Dresen G. 2000. The effect of melt distribution on the rheology of plagioclase rocks. Tectonophysics, 328: 307–327

    Article  Google Scholar 

  • Dong Y P, Ren J G, Zhang Z F, Deng J, Guo A L, Zhang X L, Hu X M, Wang, Q, Li J W, Qiu N S, Sun Y B, Zhao G C, Zhang J J, Peng J B, Lin Y T, Chu H, Lv D W. 2022. Development strategy of geology in next 5–10 years: Trends and countermeasures (in Chinese with English abstract). Chin Sci Bull, 67: 2708–2718

    Article  Google Scholar 

  • Erdman M E, Hacker B R, Zandt G, Seward G. 2013. Seismic anisotropy of the crust: Electron-backscatter diffraction measurements from the Basin and Range. Geophys J Int, 195: 1211–1229

    Article  Google Scholar 

  • Frese K, Trommsdorff V, Kunze K. 2003. Olivine [100] normal to foliation: Lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Central Alps). Contrib Mineral Petrol, 145: 75–86

    Article  Google Scholar 

  • Ganzhorn A C, Trap P, Arbaret L, Champallier R, Fauconnier J, Labrousse L, Prouteau G. 2016. Impact of gneissic layering and localized incipient melting upon melt flow during experimental deformation of migmatites. J Struct Geol, 85: 68–84

    Article  Google Scholar 

  • Gao S S, Liu K H. 2009. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem Geophys Geosyst, 10: Q02008

    Article  Google Scholar 

  • Gao Y F, Chen L, Wang X, Ai Y S. 2019. Complex lithospheric deformation in eastern and northeastern Tibet from shear wave splitting observations and its geodynamic implications. J Geophys Res-Solid Earth, 124: 10331–10346

    Article  Google Scholar 

  • Geng G J, Liu L, Xu H J, Yang W Q, Wang C, Gai Y S, Ma T, Li X, Liao X Y, Li T.. 2022. Evolution of Olivine fabrics during deep subduction and exhumation of continental crust: Insights from the Yinggelisayi garnet lherzolite, South Altyn, NW China. Geochem Geophys Geosyst, 23: e2022GC010507

    Article  Google Scholar 

  • Getsinger A J, Hirth G. 2014. Amphibole fabric formation during diffusion creep and the rheology of shear zones. Geology, 42: 535–538

    Article  Google Scholar 

  • Getsinger A. 2015. The rheology of amphibolite. Dissertation. Providence: Brown University

    Google Scholar 

  • Giuntoli F, Menegon L, Warren C J. 2018. Replacement reactions and deformation by dissolution and precipitation processes in amphibolites. J Metamorph Geol, 36: 1263–1286

    Article  Google Scholar 

  • Hacker B R, Christie J M. 1990. Brittle/ductile and plastic/cataclastic transitions in experimentally deformed and metamorphosed amphibolite. Washington D.C. American Geophysical Union Geophysical Monograph, 56: 127–147

    Google Scholar 

  • Hacker B R, Gnos E, Ratschbacher L, Grove M, McWilliams M, Sobolev S V, Wan J, Zhenhan W. 2000. Hot and dry deep crustal Xenoliths from Tibet. Science, 287: 2463–2466

    Article  Google Scholar 

  • Hansen L N, Zhao Y H, Zimmerman M E, Kohlstedt D L. 2014. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth Planet Sci Lett, 387: 157–168

    Article  Google Scholar 

  • Harigane Y, Michibayashi K, Ohara Y. 2008. Shearing within lower crust during progressive retrogression: Structural analysis of gabbroic rocks from the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc basin. Tectonophysics, 457: 183–196

    Article  Google Scholar 

  • Hasalová P, Schulmann K, Lexa O, Stipská P, Hrouda F, Ulrich S, Haloda J, Tycová P. 2008. Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: A new model based on quantitative microstructural analysis. J Metamorph Geol, 26: 29–53

    Article  Google Scholar 

  • Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203: 629–631

    Article  Google Scholar 

  • Hier-Majumder S, Mei S, Kohlstedt D L. 2005. Water weakening of clinopyroxenite in diffusion creep. J Geophys Res, 110: B07406

    Article  Google Scholar 

  • Hippertt J, Tohver E. 1999. On the development of zones of reverse shearing in mylonitic rocks. J Struct Geol, 21: 1603–1614

    Article  Google Scholar 

  • Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates. J Struct Geol, 14: 145–159

    Article  Google Scholar 

  • Hobbs B E. 1968. Recrystallization of single crystals of quartz. Tectonophysics, 6: 353–401

    Article  Google Scholar 

  • Holness M B, Cesare B, Sawyer E W. 2011. Melted rocks under the microscope: Microstructures and their interpretation. Elements, 7: 247–252

    Article  Google Scholar 

  • Hu L, Liu J L, Ji M, Cao S Y, Zhang H Y, Zhao Z Y. 2009. Identification Manual for Deformation Microstructures (in Chinese). Bei**g: Geology Press. 96

    Google Scholar 

  • Huang B Y, Zhang B, Zhang J, Liu L Q, Zhang L, Ma W W, Chen S Y, Li X R. 2022. Crustal anisotropy and deformation of the southeastern Tibetan Plateau revealed by seismic anisotropy of mylonitic amphibolites. J Struct Geol, 159: 104605

    Article  Google Scholar 

  • Huang Z, Tilmann F, Xu M, Wang L, Ding Z, Mi N, Yu D, Li H. 2017. Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting. Earth Planet Sci Lett, 478: 66–75

    Article  Google Scholar 

  • Huang Z, Wang P, Zhao D, Wang L, Xu M. 2014. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China. J Geophys Res-Solid Earth, 119: 5686–5712

    Article  Google Scholar 

  • Huang Z, Zhao D, Wang L. 2015. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics. J Geophys Res-Solid Earth, 120: 5154–5174

    Article  Google Scholar 

  • Huntington K W, Klepeis K A, Allmendinger R. 2018. Challenges and Opportunities for Research in Tectonics: Understanding Deformation and the Processes that Link Earth Systems, from Geologic Time to Human Time. A Community Vision Document Submitted to the U.S. National Science Foundation

  • Imon R, Okudaira T, Kanagawa K. 2004. Development of shape- and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution-precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan. J Struct Geol, 26: 793–805

    Article  Google Scholar 

  • Ingrin J, Doukhan N, Doukhan J C. 1991. High-temperature deformation of diopside single crystal: 2. Transmission electron microscopy investigation of the defect microstructures. J Geophys Res, 96: 14287–14297

    Article  Google Scholar 

  • Ingrin J, Doukhan N, Doukhan J C. 1992. Dislocation glide systems in diopside single crystals deformed at 800–900°C. Eur J Mineral, 4: 1291–1302

    Article  Google Scholar 

  • Jackson J. 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today, 9: 4–9

    Article  Google Scholar 

  • Ji S C, Jiang Z, Rybacki E, Wirth R, Prior D, **a B. 2004. Strain softening and microstructural evolution of anorthite aggregates and quartz-anorthite layered composites deformed in torsion. Earth Planet Sci Lett, 222: 377–390

    Article  Google Scholar 

  • Ji S C, Li L, Xu Z Q. 2021. Dislocation creep and flow strength of the Earth’s crust (in Chinese with English abstract). Acta Geol Sin, 95: 159–181

    Google Scholar 

  • Ji S C, Mainprice D. 1988. Natural deformation fabrics of plagioclase: Implications for slip systems and seismic anisotropy. Tectonophysics, 147: 145–163

    Article  Google Scholar 

  • Ji S C, Mainprice D. 1990. Recrystallization and fabric development in plagioclase. J Geol, 98: 65–79

    Article  Google Scholar 

  • Ji S C, Salisbury M H, Hanmer S. 1993. Petrofabric, P-wave anisotropy and seismic reflectivity of high-grade tectonites. Tectonophysics, 222: 195–226

    Article  Google Scholar 

  • Ji S C, Saruwatari K, Mainprice D, Wirth R, Xu Z, **a B. 2003. Microstructures, petrofabrics and seismic properties of ultra high-pressure eclogites from Sulu region, China: Implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 370: 49–76

    Article  Google Scholar 

  • Ji S C, Shao T, Michibayashi K, Long C, Wang Q, Kondo Y, Zhao W. 2013. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. J Geophys Res-Solid Earth, 118: 4699–4728

    Article  Google Scholar 

  • Ji S C, Shao T, Michibayashi K, Oya S, Satsukawa T, Wang Q, Zhao W, Salisbury M H. 2015. Magnitude and symmetry ofseismic anisotropy in mica- and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J Geophys Res-Solid Earth, 120: 6404–6430

    Article  Google Scholar 

  • Ji S C, Shao T, Salisbury M H, Sun S, Michibayashi K, Zhao W, Long C, Liang F, Satsukawa T. 2014. Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks. J Geophys Res-Solid Earth, 119: 8064–8088

    Article  Google Scholar 

  • Ji S C, Wang Q, **a B. 2002. Handbook of Seismic Properties of Minerals, Rocks, and Ores. Polytech. Canada: Int Press Montreal Que. 630

    Google Scholar 

  • Ji S C, Wirth R, Rybacki E, Jiang Z. 2000. High-temperature plastic deformation of quartz-plagioclase multilayers by layer-normal compression. J Geophys Res, 105: 16651–16664

    Article  Google Scholar 

  • Ji S C, Zhao X, Francis D. 1994a. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophysics, 239: 1–27

    Article  Google Scholar 

  • Ji S C, Zhao X O, Zhao P L. 1994b. On the measurement of plagioclase lattice preferred orientations. J Struct Geol, 16: 1711–1718

    Article  Google Scholar 

  • ** T L, Wang Q, Shatsky V, Liao Y. 2021. Water content and deformation of the lower crust beneath the Siberian Craton: Evidence from granulite xenoliths. J Geol, 129: 475–498

    Article  Google Scholar 

  • Jung H, Jung S, Ko B, Lee J. 2014. Crystal preferred orientation of amphibolites found at Yeoncheon and Chuncheon area in South Korea. Busan: Proceedings of the Joint Conference of the Geological Science and Technology of Korea. 146–147

    Google Scholar 

  • Jung H, Karato S. 2001. Water-induced fabric transitions in olivine. Science, 293: 1460–1463

    Article  Google Scholar 

  • Jung H, Katayama I, Jiang Z, Hiraga T, Karato S. 2006. Effect ofwater and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421: 1–22

    Article  Google Scholar 

  • Jung H, Lee J, Ko B, Jung S, Park M, Cao Y, Song S. 2013. Natural type-C olivine fabrics in garnet peridotites in North Qaidam UHP collision belt, NW China. Tectonophysics, 594: 91–102

    Article  Google Scholar 

  • Jung H, Mo W, Green H W. 2009. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nat Geosci, 2: 73–77

    Article  Google Scholar 

  • Jung H, Park M, Jung S, Lee J. 2010. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. J Earth Sci, 21: 555–568

    Article  Google Scholar 

  • Jung H. 2017. Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: A review. Geosci J, 21: 985–1011

    Article  Google Scholar 

  • Kamei A, Obata M, Michibayashi K, Hirajima T, Svojtka M. 2010. Two contrasting fabric patterns of olivine observed in garnet and spinel peridotite from a mantle-derived ultramafic mass enclosed in felsic granulite, the Moldanubian Zone, Czech Republic. J Petrol, 51: 101–123

    Article  Google Scholar 

  • Karato S, Jung H, Katayama I, Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu Rev Earth Planet Sci, 36: 59–95

    Article  Google Scholar 

  • Katayama I, Jung H, Karato S I. 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32: 1045–1048

    Article  Google Scholar 

  • Katayama I, Karato S, Brandon M. 2005. Evidence ofhigh water content in the deep upper mantle inferred from deformation microstructures. Geology, 33: 613–616

    Article  Google Scholar 

  • Katayama I, Karato S. 2006. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys Earth Planet Inter, 157: 33–45

    Article  Google Scholar 

  • Kendall J M. 1994. Teleseismic arrivals at a mid-ocean ridge: Effects of mantle melt and anisotropy. Geophys Res Lett, 21: 301–304

    Article  Google Scholar 

  • Keppler R, Stipp M, Behrmann J H, Ullemeyer K, Heidelbach F. 2016. Deformation inside a paleosubduction channel—Insights from microstructures and crystallographic preferred orientations of eclogites and metasediments from the Tauern Window, Austria. J Struct Geol, 82: 60–79

    Article  Google Scholar 

  • Keppler R. 2018. Crystallographic preferred orientations in eclogites - A review. J Struct Geol, 115: 284–296

    Article  Google Scholar 

  • Kern H. 1990. Laboratory seismic measurements: An aid in the interpretation of seismic field data. Terra Nova, 2: 617–628

    Article  Google Scholar 

  • Kilian R, Heilbronner R, Stünitz H. 2011. Quartz microstructures and crystallographic preferred orientation: Which shear sense do they indicate? J Struct Geol, 33: 1446–1466

    Article  Google Scholar 

  • Kim D, Jung H. 2015. Deformation microstructures ofolivine and chlorite in chlorite peridotites from Almklovdalen in the Western Gneiss Region, southwest Norway, and implications for seismic anisotropy. Int Geol Rev, 57: 650–668

    Article  Google Scholar 

  • Kim J, Jung H. 2019. New crystal preferred orientation of amphibole experimentally found in simple shear. Geophys Res Lett, 46: 12996–13005

    Article  Google Scholar 

  • Kirby S H, Kronenberg A K. 1984. Deformation of clinopyroxenite: Evidence for a transition in flow mechanisms and semibrittle behavior. J Geophys Res, 89: 3177–3192

    Article  Google Scholar 

  • Kneller E A, Long M D, van Keken P E. 2008. Olivine fabric transitions and shear wave anisotropy in the Ryukyu subduction system. Earth Planet Sci Lett, 268: 268–282

    Article  Google Scholar 

  • Kneller E A, van Keken P E, Karato S, Park J. 2005. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth Planet Sci Lett, 237: 781–797

    Article  Google Scholar 

  • Kneller E A, van Keken P E, Katayama I, Karato S. 2007. Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. J Geophys Res, 112: B04406

    Article  Google Scholar 

  • Ko B, Jung H. 2015. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nat Commun, 6: 6586

    Article  Google Scholar 

  • Kohlstedt D L, Evans B, Mackwell S J. 1995. Strength of the lithosphere: Constraints imposed by laboratory experiments. J Geophys Res, 100: 17587–17602

    Article  Google Scholar 

  • Kohlstedt D L, Holtzman B K. 2009. Shearing melt out of the earth: An experimentalist’s perspective on the influence of deformation on melt extraction. Annu Rev Earth Planet Sci, 37: 561–593

    Article  Google Scholar 

  • Kohlstedt D L, Zimmerman M E, Mackwell S J. 2010. Stress-driven melt segregation in partially molten feldspathic rocks. J Petrol, 51: 9–19

    Article  Google Scholar 

  • Kohlstedt D.L. 2007. Properties of rocks and minerals—Constitutive equations, rheological behavior, and viscosity of rocks. Treat Geophys, 2: 389–417

    Article  Google Scholar 

  • Kollé J J, Blacic J D. 1983. Deformation of single-crystal clinopyroxenes: 2. Dislocation-controlled flow processes in Hedenbergite. J Geophys Res, 88: 2381–2393

    Article  Google Scholar 

  • Kong F, Wu J, Liu K H, Gao S S. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas. Earth Planet Sci Lett, 442: 72–79

    Article  Google Scholar 

  • Krohe A. 1990. Local variations in quartz [c]-axis orientations in non-coaxial regimes and their significance for the mechanics of S-C fabrics. J Struct Geol, 12: 995–1004

    Article  Google Scholar 

  • Kronenberg A K, Ashley K T, Francsis M K, Holyoke III C W, Jezek L P, Kronenberg J A, Law R D, Thomas J B. 2020. Water loss during dynamic recrystallization of Moine thrust quartzites, northwest Scotland. Geology, 48: 557–561

    Article  Google Scholar 

  • Kronenberg A K, Kirby S H, Pinkston J. 1990. Basal slip and mechanical anisotropy of biotite. J Geophys Res, 95: 19257–19278

    Article  Google Scholar 

  • Kruhl J H. 1998. Reply: Prism- and basal-plane parallel subgrain boundaries in quartz: A microstructural geothermobarometer. J Metamorph Geol, 16: 142–146

    Google Scholar 

  • Kruse R, Stünitz H, Kunze K. 2001. Dynamic recrystallization processes in plagioclase porphyroclasts. J Struct Geol, 23: 1781–1802

    Article  Google Scholar 

  • Law R D. 2014. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review. J Struct Geol, 66: 129–161

    Article  Google Scholar 

  • Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, 73: 3661–3697

    Article  Google Scholar 

  • Lee A L, Stünitz H, Soret M, Battisti M A. 2022. Dissolution precipitation creep as a process for the strain localisation in mafic rocks. J Struct Geol, 155: 104505

    Article  Google Scholar 

  • Lee J, Jung H. 2015. Lattice-preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy. J Struct Geol, 70: 12–22

    Article  Google Scholar 

  • Lei J, Li Y, **e F, Teng J, Zhang G, Sun C, Zha X. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan plateau. J Geophys Res-Solid Earth, 119: 2174–2198

    Article  Google Scholar 

  • Lev E, Long M, Vanderhilst R. 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet Sci Lett, 251: 293–304

    Article  Google Scholar 

  • Li Q, Zhang L, Fu B, Bader T, Yu H. 2018. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic implications. J Metamorph Geol, 37: 203–226

    Article  Google Scholar 

  • Li W J, Zhang J F, Wang X, Wang Y F, Wu X, Hu Z C. 2020. Petrofabrics and seismic properties of Himalayan amphibolites: Implications for a thick anisotropic deep crust beneath southern Tibet. J Geophys Res-Solid Earth, 125: e2019JB018700

    Article  Google Scholar 

  • Li W J. 2019. Investigation on the rheology and anisotropy of himalayan amphibolites (in Chinese with English abstract). Dissertation for Doctoral Degree. Wuhan: China University of Geosciences

    Google Scholar 

  • Lister G S, Hobbs B E. 1980. The simulation of fabric development during plastic deformation and its application to quartzite: The influence of deformation history. J Struct Geol, 2: 355–370

    Article  Google Scholar 

  • Lister G S, Price G P. 1978. Fabric development in a quartz-feldspar mylonite. Tectonophysics, 49: 37–78

    Article  Google Scholar 

  • Liu J L. 2004. Microstructures of deformed rocks and rheology of the lithosphere (in Chinese with English abstract). Geol Bull China, 23: 980–985

    Google Scholar 

  • Liu J L. 2017. Strain localization and strain weakening in the continental middle crust (in Chinese with English abstract). Acta Petrol Sin, 33: 1653–1666

    Google Scholar 

  • Liu J, Wu J, Wang W, Fang L, Chang K. 2020. Seismic anisotropy beneath the eastern margin of the Tibetan Plateau from SKS splitting observations. Tectonophysics, 785: 228430

    Article  Google Scholar 

  • Liu W, Zhang J, Cao Y, ** Z. 2020. Geneses of two contrasting antigorite crystal preferred orientations and their implications for seismic anisotropy in the forearc mantle. J Geophys Res-Solid Earth, 125: e2020JB019354

    Article  Google Scholar 

  • Liu Z, Tian X B, Yuan X H, Liang X F, Chen Y, Zhu G H, Zhang H S, Li W, Tan P, Zuo S C, Wu C L, Nie S T, Wang G C, Yu G P, Zhou B B. 2020. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves. Earth Planet Sci Lett, 531: 115954

    Article  Google Scholar 

  • Llana-Fünez S, Brown D. 2012. Contribution of crystallographic preferred orientation to seismic anisotropy across a surface analog of the continental Moho at Cabo Ortegal, Spain. GSA Bull, 124: 1495–1513

    Article  Google Scholar 

  • Llorens M G, Gomez-Rivas E, Ganzhorn A C, Griera A, Steinbach F, Roessiger J, Labrousse L, Walte N P, Weikusat I, Bons P D. 2019. The effect of dynamic recrystallisation on the rheology and microstructures of partially molten rocks. J Struct Geol, 118: 224–235

    Article  Google Scholar 

  • Lloyd G E, Butler R W H, Casey M, Mainprice D. 2009. Mica, deformation fabrics and the seismic properties of the continental crust. Earth Planet Sci Lett, 288: 320–328

    Article  Google Scholar 

  • Lloyd G E, Butler R W H, Casey M, Tatham D J, Mainprice D. 2011. Constraints on the seismic properties of the middle and lower continental crust. Geol Soc Lond Spec Publ, 360: 7–32

    Article  Google Scholar 

  • Mainprice D, Silver P G. 1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys Earth Planet Inter, 78: 257–280

    Article  Google Scholar 

  • Mainprice D, Barruol G, Ismail W B. 2000. The seismic anisotropy of the earth’s mantle from single crystal to polycrystal. In: Karato S, Forte A M, Liebermann R C, Masters G, Stixrude L. Earth’s Deep Interior. American Geophysical Union, Geophysical Monograph, 117: 237–264

    Google Scholar 

  • Mainprice D, Bouchez J L, Blumenfeld P, Tubià J M. 1986. Dominant c slip in naturally deformed quartz: Implications for dramatic plastic softening at high temperature. Geology, 14: 819–822

    Article  Google Scholar 

  • Mainprice D, Ildefonse B. 2009. Seismic anisotropy of subduction zone minerals—Contribution of hydrous phases. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics, Frontiers in Earth Sciences. Berlin: Springer–Verlag. 63–84

    Chapter  Google Scholar 

  • Mainprice D. 1990. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geoscis, 16: 385–393

    Article  Google Scholar 

  • Mainprice D. 2007. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective, a treatise on geophysics. In: Schubert G, ed. Treatise in Geophysics—Volume 2: Mineral Physics. Amsterdam: Elsevier. 437–491

    Chapter  Google Scholar 

  • Manthilake M A G M, Miyajima N, Heidelbach F, Soustelle V, Frost D J. 2013. The effect of aluminum and water on the development of deformation fabrics of orthopyroxene. Contrib Mineral Petrol, 165: 495–505

    Article  Google Scholar 

  • Mareš V M, Kronenberg A K. 1993. Experimental deformation of muscovite. J Struct Geol, 15: 1061–1075

    Article  Google Scholar 

  • Marshall D B, McLaren A C. 1977. Deformation mechanisms in experimentally deformed plagioclase feldspars. Phys Chem Miner, 1: 351–370

    Article  Google Scholar 

  • Marti S, Stünitz H, Heilbronner R, Plumper O, Kilian R. 2018. Syn-kinematic hydration reactions, grain size reduction, and dissolution-precipitation creep in experimentally deformed plagioclase-pyroxene mixtures. Solid Earth, 9: 985–1009

    Article  Google Scholar 

  • Maruyama G, Hiraga T. 2017. Grain- to multiple-grain-scale deformation processes during diffusion creep of forsterite+diopside aggregate: 1. Direct observations. J Geophys Res-Solid Earth, 122: 5890–5915

    Article  Google Scholar 

  • Mauler A, Bystricky M, Kunze K, Mackwell S. 2000. Microstructures and lattice preferred orientations in experimentally deformed clinopyroxene aggregates. J Struct Geol, 22: 1633–1648

    Article  Google Scholar 

  • Mauler A, Godard G, Kunze K. 2001. Crystallographic fabrics of omphacite, rutile and quartz in Vendée eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics, 342: 81–112

    Article  Google Scholar 

  • McNamara D D, Wheeler J, Pearce M, Prior D J. 2012. Fabrics produced mimetically during static metamorphism in retrogressed eclogites from the Zermatt-Saas zone, Western Italian Alps. J Struct Geol, 44: 167–178

    Article  Google Scholar 

  • Mcskimin H J, Andreatch P, Thurston R N. 1965. Elastic Moduli of Quartz versus Hydrostatic Pressure at 25° and −195.8°C. J Appl Phys, 36: 1624–1632

    Article  Google Scholar 

  • Mehl L, Hirth G. 2008. Plagioclase preferred orientation in layered mylonites: Evaluation of flow laws for the lower crust. J Geophys Res, 113: B05202

    Article  Google Scholar 

  • Menegon L, Pennacchioni G, Spiess R. 2008. Dissolution-precipitation creep of K-feldspar in mid-crustal granite mylonites. J Struct Geol, 30: 565–579

    Article  Google Scholar 

  • Michibayashi K, Mainprice D, Fujii A, Uehara S, Shinkai Y, Kondo Y, Ohara Y, Ishii T, Fryer P, Bloomer S H, Ishiwatari A, Hawkins J W, Ji S. 2016. Natural olivine crystal-fabrics in the western Pacific convergence region: A new method to identify fabric type. Earth Planet Sci Lett, 443: 70–80

    Article  Google Scholar 

  • Michibayashi K, Oohara T. 2013. Olivine fabric evolution in a hydrated ductile shear zone at the Moho Transition Zone, Oman Ophiolite. Earth Planet Sci Lett, 377–378: 299–310

    Article  Google Scholar 

  • Montardi Y, Mainprice D. 1987. A transmission electron microscopic study of natural plastic deformation of calcic plagioclases (An 68–70). bulmi, 110: 1–14

    Article  Google Scholar 

  • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982

    Article  Google Scholar 

  • Müller W F, Friedrich Walte N, Miyajima N. 2008. Experimental deformation of ordered natural omphacite: A study by transmission electron microscopy. Eur J Mineral, 20: 835–844

    Article  Google Scholar 

  • Nicolas A, Christensen N I. 1987. Formation of anisotropy in upper mantle peridotites: A review. Amer Geophys Union, 16: 111–123

    Google Scholar 

  • O’Brien P J, Zotov N, Law R, Khan M A, Jan M Q. 2001. Coesite in Himalayan eclogite and implications for models ofIndia-Asia collision. Geology, 29: 435–438

    Article  Google Scholar 

  • Ohuchi T, Irifune T. 2014. Crystallographic preferred orientation of olivine in the Earth’s deep upper mantle. Phys Earth Planet Inter, 228: 220–231

    Article  Google Scholar 

  • Ohuchi T, Karato S, Fu**o K. 2011. Strength of single-crystal orthopyroxene under lithospheric conditions. Contrib Mineral Petrol, 161: 961–975

    Article  Google Scholar 

  • Palasse L N, Vissers R L M, Paulssen H, Basu A R, Drury M R. 2012. Microstructural and seismic properties of the upper mantle underneath a rifted continental terrane (Baja California): An example of sub-crustal mechanical asthenosphere? Earth Planet Sci Lett, 345–348: 60–71

    Article  Google Scholar 

  • Park M, Jung H. 2017. Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709: 55–68

    Article  Google Scholar 

  • Passchier C W, Trouw R A J. 2005. Microtectonics. Berlin Heidelberg: Springer

    Google Scholar 

  • Pearce M A, Wheeler J, Prior D J. 2011. Relative strength of mafic and felsic rocks during amphibolite facies metamorphism and deformation. J Struct Geol, 33: 662–675

    Article  Google Scholar 

  • Peternell M, Hasalova P, Wilson C J L, Piazolo S, Schulmann K. 2010. Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques. J Struct Geol, 32: 803–817

    Article  Google Scholar 

  • Précigout J, Prigent C, Palasse L, Pochon A. 2017. Water pum** in mantle shear zones. Nat Commun, 8: 15736

    Article  Google Scholar 

  • Puelles P, Beranoaguirre A, Abalos B, Gil Ibarguchi J I, Garcia de Madinabeitia S, Rodriguez J, Fernández-Armas S. 2017. Eclogite inclusions from subducted metaigneous continental crust (Malpica-Tui Allochthonous Complex, NW Spain): Petrofabric, geochronology, and calculated seismic properties. Tectonics, 36: 1376–1406

    Article  Google Scholar 

  • Puelles P, Gil Ibarguchi J I, Beranoaguirre A, Abalos B. 2012. Mantle wedge deformation recorded by high-temperature peridotite fabric superposition and hydrous retrogression (Limo massif, Cabo Ortegal, NW Spain). Int J Earth Sci-Geol Rund, 101: 1835–1853

    Article  Google Scholar 

  • Raleigh C B, Talbot J L. 1967. Mechanical twinning in naturally and experimentally deformed diopside. Am J Sci, 265: 151–165

    Article  Google Scholar 

  • Raterron P, Doukhan N, Jaoul O, Doukhan J C. 1994. High temperature deformation of diopside IV: Predominance of {110} glide above 1000°C. Phys Earth Planet Inter, 82: 209–222

    Article  Google Scholar 

  • Raterron P, Chen J, Li L, Weidner D, Cordier P. 2007. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. Am Mineral, 92: 1436–1445

    Article  Google Scholar 

  • Rehman H U, Mainprice D, Barou F, Yamamoto H, Okamoto K. 2016. EBSD-measured crystal preferred orientation of eclogites from the Sanbagawa metamorphic belt, central Shikoku, SW Japan. Eur J Mineral, 28: 1155–1168

    Article  Google Scholar 

  • Renedo R N, Nachlas W O, Whitney D L, Teyssier C, Piazolo S, Gordon S M, Fossen H. 2015. Fabric development during exhumation from ultrahigh-pressure in an eclogite-bearing shear zone, Western Gneiss Region, Norway. J Struct Geol, 71: 58–70

    Article  Google Scholar 

  • Rosenberg C L, Stünitz H. 2003. Deformation and recrystallization of plagioclase along a temperature gradient: An example from the Bergell tonalite. J Struct Geol, 25: 389–408

    Article  Google Scholar 

  • Rosenberg C L. 2001. Deformation of partially molten granite: A review and comparison of experimental and natural case studies. Int J Earth Sci, 90: 60–76

    Article  Google Scholar 

  • Ross J V, Wilks K R. 1995. Effects of a third phase on the mechanical and microstructural evolution of a granulite. Tectonophysics, 241: 303–315

    Article  Google Scholar 

  • Ross J V, Wilks K R. 1996. Microstructure development in an experimentally sheared orthopyroxene granulite. Tectonophysics, 256: 83–100

    Article  Google Scholar 

  • Rybacki E, Dresen G. 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics, 382: 173–187

    Article  Google Scholar 

  • Rybacki E, Dresen G. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. J Geophys Res, 105: 26017–26036

    Article  Google Scholar 

  • Rybacki E, Gottschalk M, Wirth R, Dresen G. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. J Geophys Res, 111: B03203

    Article  Google Scholar 

  • Rybacki E, Wirth R, Dresen G. 2008. High-strain creep of feldspar rocks: Implications for cavitation and ductile failure in the lower crust. Geophys Res Lett, 35: L04304

    Article  Google Scholar 

  • Rybacki E, Wirth R, Dresen G. 2010. Superplasticity and ductile fracture of synthetic feldspar deformed to large strain. J Geophys Res, 115: B08209

    Article  Google Scholar 

  • Saruwatari K, Ji S C, Long C X, Salisbury M H. 2001. Seismic anisotropy of mantle xenoliths and constraints on upper mantle structure beneath the southern Canadian Cordillera. Tectonophysics, 339: 403–426

    Article  Google Scholar 

  • Satsukawa T, Ildefonse B, Mainprice D, Morales L F G, Michibayashi K, Barou F. 2013. A database of plagioclase crystal preferred orientations (CPO) and microstructures—Implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks. Solid Earth, 4: 511–542

    Article  Google Scholar 

  • Savage M K. 1999. Seismic anisotropy and mantle deformation: Whathave we learned from shear wave splitting? Rev Geophys, 37: 65–106

    Article  Google Scholar 

  • Schmädicke E, Gose J, Reinhardt J, Will T M, Stalder R. 2015. Garnet in cratonic and non-cratonic mantle and lower crustal xenoliths from southern Africa: Composition, water incorporation and geodynamic constraints. Precambrian Res, 270: 285–299

    Article  Google Scholar 

  • Schmid S M, Casey M. 1986. Complete fabric analysis ofsome commonly observed quartz c-axis patterns. In: Hobbs B E, Heard H C, eds. Mineral and Rock Deformation: Laboratory Studies—The Paterson Volume. American Geophysical Union Monograph, 36: 246–261

    Google Scholar 

  • Schmidtke M J, Keppler R L, Kossak-Glowczewski J, Froitzheim N, Stipp M. 2021. Elastic anisotropies of rocks in a subduction and exhumation setting. Solid Earth, 12: 1801–1828

    Article  Google Scholar 

  • Shan H S, Liu J L, Zhou B J, Chen X Y, Yan J X, Hou C R. 2022. Contribution of deformation and reaction of amphiboles to the weakening of the middle continental crust: A case study from sheared diorites along the Shuiyu shear zone in Northern Bei**g. J Struct Geol, 163: 104727

    Article  Google Scholar 

  • Shao T, Ji S, Kondo Y, Michibayashi K, Wang Q, Xu Z, Sun S, Marcotte D, Salisbury M H. 2014. Antigorite-induced seismic anisotropy and implications for deformation in subduction zones and the Tibetan Plateau. J Geophys Res-Solid Earth, 119: 2068–2099

    Article  Google Scholar 

  • Shao T. 2015. Fabric and elastic properties of antigorite, mica and amphibole-rich rocks and implications for the tectonic interprétation of seismic anisotropy. Dissertation for Doctoral Degree. École Polytechnique de Montréal

  • Shao Y L, Prior D J, Toy V G, Negrini M, Scott J M. 2021. Does second phase content control the evolution of olivine CPO type and deformation mechanisms? A case study of paired harzburgite and dunite bands in the Red Hills Massif, Dun Mountain Ophiolite. Lithos, 406–407: 106532

    Article  Google Scholar 

  • Shelley D. 1994. Spider texture and amphibole preferred orientations. J Struct Geol, 16: 709–717

    Article  Google Scholar 

  • Sherrington H F, Zandt G, Frederiksen A. 2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. J Geophys Res, 109: B02312

    Article  Google Scholar 

  • Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu Rev Earth Planet Sci, 24: 385–432

    Article  Google Scholar 

  • Skemer P, Katayama I, Karato S I. 2006. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: Evidence of deformation at low temperatures in the presence of water. Contrib Mineral Petrol, 152: 43–51

    Article  Google Scholar 

  • Skemer P, Warren J M, Hansen L N, Hirth G, Kelemen P B. 2013. The influence of water and LPO on the initiation and evolution of mantle shear zones. Earth Planet Sci Lett, 375: 222–233

    Article  Google Scholar 

  • Skrotzki W. 1990. Microstructure in hornblende of a mylonitic amphibolite. Geol Soc Lond Spec Publ, 54: 321–325

    Article  Google Scholar 

  • Skrotzki W. 1992. Defect structure and deformation mechanisms in naturally deformed hornblende. Phys Stat Sol (a), 131: 605–624

    Article  Google Scholar 

  • Smit M A, Scherer E E, John T, Janssen AH. 2011. Creep of garnet in eclogite: Mechanisms and implications. Earth Planet Sci Lett, 311: 411–419

    Article  Google Scholar 

  • Soret M, Agard P, Ildefonse B, Dubacq B, Prigent C, Rosenberg C L. 2019. Deformation mechanisms in mafic amphibolites and granulites: Record from the Semail metamorphic sole during subduction infancy. Solid Earth, 10: 1733–1755

    Article  Google Scholar 

  • Soustelle V, Manthilake G. 2017. Deformation of olivine-orthopyroxene aggregates at high pressure and temperature: Implications for the seismic properties of the asthenosphere. Tectonophysics, 694: 385–399

    Article  Google Scholar 

  • Steuten J M, Van Roermund H L M. 1989. An optical and electron microscopy study of defect structures in naturally deformed orthopyroxene. Tectonophysics, 157: 331–338

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R E E, Schmid S M. 2002b. Dynamic recrystallization of quartz: Correlation between natural and experimental conditions. Geol Soc Lond Spec Publ, 200: 171–190

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid S M. 2002a. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol, 24: 1861–1884

    Article  Google Scholar 

  • Stipp M, Tullis J, Behrens H. 2006. Effect ofwater on the dislocation creep microstructure and flow stress of quartz and implications for the re-crystallized grain size piezometer. J Geophys Res, 111: B04201

    Article  Google Scholar 

  • Stokes M R, Wintsch R P., Southworth C S. 2012. Deformation of amphibolites via dissolution-precipitation creep in the middle and lower crust. J Metamorph Geol, 30: 723–737

    Article  Google Scholar 

  • Stünitz H, Fitz Gerald J D, Tullis J. 2003. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics, 372: 215–233

    Article  Google Scholar 

  • Stünitz H, Thust A, Heilbronner R, Behrens H, Kilian R, Tarantola A, Fitz Gerald J D. 2017. Water redistribution in experimentally deformed natural milky quartz single crystals-Implications for H2O-weakening processes. J Geophys Res-Solid Earth, 122: 866–894

    Article  Google Scholar 

  • Sun S S, Dong Y P, Cheng C, He D F, Zhou B, Liu X M. 2022. Mesozoic intracontinental ductile shearing along the Paleozoic Shangdan suture in the Qinling Orogen: Constraints from deformation fabrics and geochronology. GSA Bull, 134: 2649–2666

    Article  Google Scholar 

  • Sun S S, Dong Y P, Liu X M, He D F, Cheng C. 2019a. Fabrics, geothermometry, and geochronology of the Songshugou ophiolite: Insights into the tectonic evolution of the Shangdan suture, Qinling orogen, China. Lithosphere, 11: 784–803

    Article  Google Scholar 

  • Sun S S, Dong Y P, Sun Y L, Cheng C, Huang X C, Liu X M. 2019b. Re-Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massifin the Qinling Orogenic Belt, China. Gondwana Res, 70: 71–87

    Article  Google Scholar 

  • Sun S S, Dong Y P, Liu X M, He D F, Cheng C. 2019c. Fabrics, geothermometer and geochronology of the Songshugou ophiolite: Insights into the tectonic evolution of the Shangdan suture, Qinling orogen, China. Lithosphere, 11: 784–803

    Article  Google Scholar 

  • Sun S S, Ji S C, Michibayashi K, Salisbury M. 2016. Effects of olivine fabric, melt-rock reaction, and hydration on the seismic properties of peridotites: Insight from the Luobusha ophiolite in the Tibetan Plateau. J Geophys Res-Solid Earth, 121: 3300–3323

    Article  Google Scholar 

  • Sun S S, Ji S C, Wang Q, Salisbury M, Kern H. 2012a. P-wave velocity differences between surface-derived and core samples from the Sulu ultrahigh-pressure terrane: Implications for in situ velocities at great depths. Geology, 40: 651–654

    Article  Google Scholar 

  • Sun S S, Ji S C, Wang Q, Wang H C, Long C X, Salisbury M. 2012b. Seismic properties of the Longmen Shan complex: Implications for the moment magnitude of the great 2008 Wenchuan earthquake in China. Tectonophysics, 564–565: 68–82

    Article  Google Scholar 

  • Sun S S, Ji S C, Wang Q, Xu Z Q, Salisbury M., Long C.X. 2012c. Seismic velocities and anisotropy of core samples from the Chinese Continental Scientific Drilling borehole in the Sulu UHP terrane, eastern China. J Geophys Res, 117: B01206

    Article  Google Scholar 

  • Sun S S, Ji S C. 2011. On the formation of seismic anisotropy and shear wave splitting in oceanic subduction zones. Geotect Metall, 35: 628–647

    Google Scholar 

  • Sun S S. 2011. Seismic velocities, anisotropy and elastic properties of crystalline rocks and implications for interpretation of seismic data. Dissertation for Doctoral Degree. Ecole Polytechnique de Montreal

  • Sun Y, Niu F, Liu H, Chen Y, Liu J. 2012. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth Planet Sci Lett, 349–350: 186–197

    Article  Google Scholar 

  • Sundberg M, Cooper R F. 2008. Crystallographic preferred orientation produced by diffusional creep of harzburgite: Effects of chemical interactions among phases during plastic flow. J Geophys Res, 113: B12208

    Article  Google Scholar 

  • Tasaka M, Zimmerman M E, Kohlstedt D L. 2017. Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing: Part 2. Microstructural development. J Geophys Res-Solid Earth, 125: e2020JB019888

    Article  Google Scholar 

  • Tatham D J, Lloyd G E, Butler R W H, Casey M. 2008. Amphibole and lower crustal seismic properties. Earth Planet Sci Lett, 267: 118–128

    Article  Google Scholar 

  • Terry M P, Heidelbach F. 2006. Deformation-enhanced metamorphic reactions and the rheology of high-pressure shear zones, Western Gneiss Region, Norway. J Metamorph Geol, 24: 3–18

    Article  Google Scholar 

  • Tokle L, Hirth G, Stünitz H. 2023. The effect of muscovite on the microstructural evolution and rheology of quartzite in general shear. J Struct Geol, 169: 104835

    Article  Google Scholar 

  • Tommasi A, Vauchez A. 2015. Heterogeneity and anisotropy in the lithospheric mantle. Tectonophysics, 661: 11–37

    Article  Google Scholar 

  • Toy V G, Prior D J, Norris R J. 2008. Quartz fabrics in the Alpine Fault mylonites: Influence of pre-existing preferred orientations on fabric development during progressive uplift. J Struct Geol, 30: 602–621

    Article  Google Scholar 

  • Tullis J, Christie J M, Griggs D T. 1973. Microstructures and preferred orientations ofexperimentally deformed quartzites. GSA Bull, 84: 297–314

    Article  Google Scholar 

  • Tullis J, Yund R, Farver J. 1996. Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones. Geology, 24: 63–66

    Article  Google Scholar 

  • Tullis J. 2002. Deformation of granitic rocks: Experimental studies and natural examples. Rev Mineral Geochem, 51: 51–95

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

    Article  Google Scholar 

  • Ulrich S, Mainprice D. 2005. Does cation ordering in omphacite influence development of lattice-preferred orientation? J Struct Geol, 27: 419–431

    Article  Google Scholar 

  • Vaughan M T, Guggenheim S. 1986. Elasticity of muscovite and its relationship to crystal structure. J Geophys Res, 91: 4657–4664

    Article  Google Scholar 

  • Van Roermund H L M, Boland J N. 1981. The dislocation substructures of naturally deformed omphacites. Tectonophysics, 78: 403–418

    Article  Google Scholar 

  • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477: 119–134

    Article  Google Scholar 

  • Vinnik L P, Makeyeva L I, Milev A, Usenko A Y. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys J Int, 111: 433–447

    Article  Google Scholar 

  • Wang C Y, Flesch L M, Silver P G, Chang L J, Chan W W. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36: 363–366

    Article  Google Scholar 

  • Wang Q, Burlini L, Mainprice D, Xu Z Q. 2009. Geochemistry, petrofabrics and seismic properties of eclogites from the Chinese Continental Scientific Drilling boreholes in the Sulu UHP terrane, eastern China. Tectonophysics, 475: 251–266

    Article  Google Scholar 

  • Wang Q, Ji S C, Salisbury M H, **a B, Pan M, Xu Z Q. 2005a. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): Implications for seismic properties of subducted slabs and origin of mantle reflections. Tectonophysics, 398: 67–99

    Article  Google Scholar 

  • Wang Q, Ji S C, Salisbury M, **a B, Pan M, Xu Z Q. 2005b. Shear wave properties and Poisson’s ratios ofultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt, China: Implications for crustal composition. J Geophys Res, 110: B08208

    Article  Google Scholar 

  • Wang Q, Niu F, Gao Y, Chen Y. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophys J Int, 204: 167–179

    Article  Google Scholar 

  • Wang Q, **a Q K, O’reilly S Y, Griffin W L, Beyer E E, Brueckner H K. 2013. Pressure- and stress-induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): Implications for mantle seismic anisotropy. J Metamorph Geol, 31: 93–111

    Article  Google Scholar 

  • Wang Q. 2016. Homologous temperature of olivine: Implications for creep of the upper mantle and fabric transitions in olivine. Sci China Earth Sci, 59: 1138–1156

    Article  Google Scholar 

  • Wang Y F, Zhang J F, ** Z M, Green II H W. 2012. Mafic granulite rheology: Implications for a weak continental lower crust. Earth Planet Sci Lett, 353–354: 99–107

    Article  Google Scholar 

  • Ward D, Mahan K, Schulte-Pelkum V. 2012. Roles of quartz and mica in seismic anisotropy of mylonites. Geophys J Int, 190: 1123–1134

    Article  Google Scholar 

  • Warren J M, Hirth G. 2006. Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet Sci Lett, 248: 43 8–450

    Article  Google Scholar 

  • Wepfer W W, Christensen NI. 1991. A seismic velocity-confining pressure relation, with applications. Int J Rock Mech Min Sci GeoMech Abstracts, 28: 451–456

    Article  Google Scholar 

  • Whitney D L, Teyssier C, Seaton N C A, Fornash K F. 2014. Petrofabrics of high-pressure rocks exhumed at the slab-mantle interface from the “point of no return” in a subduction zone (Sivrihisar, Turkey). Tectonics, 33: 2315–2341

    Article  Google Scholar 

  • Wilks K R, Carter N L. 1990. Rheology of some continental lower crustal rocks. Tectonophysics, 182: 57–77

    Article  Google Scholar 

  • Winter J D. 2001. An Introduction to Igneous and Metamorphic Petrology. Whitman College: Springer

  • Wu C, Tian X, Xu T, Liang X, Chen Y, Taylor M, Badal J, Bai Z, Duan Y, Yu G, Teng J. 2019. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: New evidence based on shear wave splitting measurements. Earth Planet Sci Lett, 514: 75–83

    Article  Google Scholar 

  • Wu J, Zhang Z, Kong F, Yang B B, Yu Y, Liu K H, Gao S S. 2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth Planet Sci Lett, 413: 167–175

    Article  Google Scholar 

  • **a Q K, Yang X Z, Deloule E, Sheng Y M, Hao Y T. 2006. Water in the lower crustal granulite xenoliths from Nushan, eastern China. J Geophys Res, 111: B11202

    Article  Google Scholar 

  • Xu Z Q, Wang Q, Chen F Y, Liang F H, Tang Z M. 2006. Fabric kinematics of eclogite and deep continental subduction: EBSD study of eclogite from the main hole of the Chinese Continental Scientific Drilling Project (in Chinese with English abstract). Acta Petrol Sin, 22: 1799–1809

    Google Scholar 

  • Xu Z, Wang Q, Ji S, Chen J, Zeng L, Yang J, Chen F, Liang F, Wenk H R. 2006. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 421: 111–127

    Article  Google Scholar 

  • Yang X, Deloule E, **a Q, Fan Q, Feng M. 2008. Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. J Geophys Res, 113: 2007JB005541

    Article  Google Scholar 

  • Yang Y H, Zhang X M, Dong Y P, Sun S S, Hua Q, Liang C T. 2022. Crustal deformation patterns in the Tibetan Plateau and its adjacent regions as revealed by receiver functions. Bull Seismol Soc Am, 112: 1297–1314

    Article  Google Scholar 

  • Yang Y, Abart R, Yang X, Shang Y, Ntaflos T, Xu B. 2019. Seismic anisotropy in the Tibetan lithosphere inferred from mantle xenoliths. Earth Planet Sci Lett, 515: 260–270

    Article  Google Scholar 

  • Yang Y, Chen J Y, Yang X S, Yan X B, Zhang G L. 2010. Does alignment of melt enhance seismic anisotropy beneath Tibet? (in Chinese with English abstract). Seismol Geol, 32: 59–69

    Google Scholar 

  • Yang Y, Liang C, Fang L, Su J, Hua Q. 2018. A comprehensive analysis on the stress field and seismic anisotropy in eastern Tibet. Tectonics, 37: 1648–1657

    Article  Google Scholar 

  • Závada P, Schulmann K, Konopasek J, Ulrich, S, Lexa O. 2007. Extreme ductility of feldspar aggregates-Melt-enhanced grain boundary sliding and creep failure: Rheological implications for felsic lower crust. J Geophys Res, 112: B10210

    Article  Google Scholar 

  • Závada P, Schulmann K, Racek M, Hasalová P, Jeřábek P, Weinberg R F, Štípská P, Roberts A. 2018. Role of strain localization and melt flow on exhumation of deeply subducted continental crust. Lithosphere, 10: 217–238

    Article  Google Scholar 

  • Zertani S, John T, Tilmann F, Motra H B, Keppler R, Andersen T B, Labrousse L. 2019. Modification of the seismic properties of subducting continental crust by eclogitization and deformation processes. J Geophys Res-Solid Earth, 124: 9731–9754

    Article  Google Scholar 

  • Zhang H, Li Y E, Zhao D, Zhao J, Liu H. 2018. Formation of rifts in central Tibet: Insight from P wave radial anisotropy. J Geophys Res-Solid Earth, 123: 8827–8841

    Article  Google Scholar 

  • Zhang J F, Wang Y F, ** Z M. 2008. CPO-induced seismic anisotropy in UHP eclogites. Sci China Ser D-Earth Sci, 51: 11–21

    Article  Google Scholar 

  • Zhang J J, Shang S, Wei C J, Zhang N, Zhang G W, Dong Y P, ** Z M, Zhang J F, Cao S Y, Liu J L, Liu Y J. 2019. Present status and deveoloment prospect of syudies of rheology of continental lithosphere (in Chinese with English abstract). Acta Geolsci Sin, 40: 9–16

    Google Scholar 

  • Zhang J, Green II H W, Bozhilov K N, ** Z. 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633–636

    Article  Google Scholar 

  • Zhang J, ** Z, Green H W. 2005. Hydroxyl induced eclogite fabric and deformation mechanism. Chin Sci Bull, 50: 685–690

    Article  Google Scholar 

  • Zhang J, Green II H, Bozhilov K. 2006. Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations. Earth Planet Sci Lett, 246: 432–443

    Article  Google Scholar 

  • Zhang J, Green H W. 2007. Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. J Metamorph Geol, 25: 97–115

    Article  Google Scholar 

  • Zhang L, Ye Y, Qin S, ** Z. 2018. Water in the thickened lower crust of the Eastern Himalayan Orogen. J Earth Sci, 29: 1040–1048

    Article  Google Scholar 

  • Zhang L, Zhang J, ** Z. 2016. Metamorphic P-T-water conditions of the Yushugou granulites from the southeastern Tianshan orogen: Implications for Paleozoic accretionary orogeny. Gondwana Res, 29: 264–277

    Article  Google Scholar 

  • Zhang Q, Li X. 2021. The application and associated problems of EBSD technique in fabric analysis (in Chinese with English abstract). Acta Petrol Sin, 37: 1000–1014

    Article  Google Scholar 

  • Zhang Z J, Yuan X H, Chen Y, Tian X B, Kind R, Li X Q, Teng J W. 2010. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth Planet Sci Lett, 292: 254–264

    Article  Google Scholar 

  • Zhang Z, Wang Y, Houseman G A, Xu T, Wu Z, Yuan X, Chen Y, Tian X, Bai Z, Teng J. 2014. The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust. Earth Planet Sci Lett, 408: 370–377

    Article  Google Scholar 

  • Zhao J M, Yuan X H, Liu H B, Kumar P, Pei S P, Kind R, Zhang Z J, Teng J W, Ding L, Gao X, Xu Q, Wang W. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proc Natl Acad Sci USA, 107: 11229–11233

    Article  Google Scholar 

  • Zhao N, Hirth G, Cooper R F, Kruckenberg S C, Cukjati J. 2019. Low viscosity of mantle rocks linked to phase boundary sliding. Earth Planet Sci Lett, 517: 83–94

    Article  Google Scholar 

  • Zhou Y S, Zhang H T, Yao W M, Dang J X, He C R. 2017. An experimental study on creep of partially molten granulite under high temperature and wet conditions. J Asian Earth Sci, 139: 15–29

    Article  Google Scholar 

  • Zhou Y, Rybacki E, Wirth R, He C, Dresen G. 2012. Creep of partially molten fine-grained gabbro under dry conditions. J Geophys Res, 117: B05204

    Article  Google Scholar 

Download references

Acknowledgements

The anonymous reviewers are highly appreciated for their critical and constructive comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42022016, 41930217 and 42372257) and the Youth Innovation Team of Shaanxi Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Dong.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Dong, Y., Li, Y. et al. Rheology of continental lithosphere and seismic anisotropy. Sci. China Earth Sci. 67, 31–60 (2024). https://doi.org/10.1007/s11430-022-1171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1171-3

Keywords

Navigation