Log in

Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Central Alps)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Automated electron backscattered diffraction (EBSD) was applied using a scanning electron microscope to obtain lattice preferred orientation (LPO) data for olivine in garnet peridotites of the Central Alps. As a reference frame, the LPOs of enstatite were also investigated. In the garnet peridotite at Cima di Gagnone (CDG), a weak foliation carrying a distinct lineation is present. The lineation is characterized by elongated enstatite, olivine and poikiloblastic garnet. Olivine shows a very unusual LPO with [100] normal to foliation and [001] parallel to lineation. Achsenverteilungsanalyse (AVA) maps demonstrate that [001] of olivine grains corresponds quite well to their maximum length axes which are preferentially parallel to the lineation. Numerous planar hydrous defects within (001) planes of olivine are marked by palisades of ilmenite rods and show a preferred orientation normal to lineation. Calculated P-wave velocities for CDG are fastest (8.32 km s−1) normal to foliation with a relatively low anisotropy (2.9%). Compared to mantle peridotites with the usual (010)[100] LPO where the fastest Vp direction is towards the lineation, the relationship between flow geometry and seismic anisotropy is significantly different at CDG. Several mechanisms for the formation of the LPO type at CDG are considered, with glide possible on (100)[001] of olivine. On the basis of field data as well as petrographic and petrologic evidence, it has been demonstrated that the CDG garnet peridotite formed by prograde metamorphism from a hydrous protolith at pressures and temperatures of about 3.0 GPa and 750 °C, respectively. The CDG LPO is interpreted to have formed during hydrous subduction zone metamorphism. The same interpretation may hold for the previously investigated olivine LPO at Alpe Arami, which is similar to that at the nearby CDG. The observed anomalous LPO is no proof for ultradeep (>3.0 GPa) conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–e.
Fig. 3a–c.
Fig. 4a–d.
Fig. 5a–e.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Abramson EH, Brown JM, Slutsky LJ, Zang J (1997) The elastic constants of San Carlos olivine to 17 GPa. J Geophys Res 102(6):12253–12263

    Google Scholar 

  • Anonymous (1974) Geologischer Atlas der Schweiz 1:25000, Blatt 1313 Bellinzona. Schweizerische Geologische Kommission

    Google Scholar 

  • Babusca V, Fiala J, Kumazawa M (1978) Elastic properties of garnet solid solution series. Phys Earth Planet Interiors 16:157–176

    Article  Google Scholar 

  • Bay L (1999) Strukturgeologie und Petrographie im Gorduno Tal (Alpe Arami). Diploma Thesis, ETH, Zürich

  • Becker H (1993) Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (Swiss Alps), New evidence for high-pressure metamorphism in the Central Alps. Geology 21:599–602

    CAS  Google Scholar 

  • Ben Ismail W, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 269(1–2):145–157

    Google Scholar 

  • Bons PD, den Brok B (2000) Crystallographic preferred orientation development by dissolution-precipitation creep. J Struct Geol 22:1713–1722

    Article  Google Scholar 

  • Boudier F (1978) Structure and petrology of the Lanzo peridotite massif (Piemont Alps). Geol Soc Am Bull 89:1574–1591

    CAS  Google Scholar 

  • Brenker FE, Brey P (1997) Reconstruction of the exhumation path of Alpe Arami garnet-peridotite body from depths exceeding 160 km. J Metamorph Geol 15:581–592

    CAS  Google Scholar 

  • Bystricky M, Kunze K, Burlini L, Burg JP (2000) High shear strain of olivine aggregates; rheological and seismic consequences. Science 290:1564–1567

    Article  CAS  PubMed  Google Scholar 

  • Carter NL, Avé Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol Soc Am Bull 81:2181–2202

    CAS  Google Scholar 

  • Den Tex E (1969) Origin of ultramafic rocks, their tectonic setting and history: a contribution to the discussion of the paper 'The origin of ultramafic and ultrabasic rocks' by P.J. Wyllie. Tectonophysics 7:457–488

    Google Scholar 

  • Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 km. Science 271:1841–1845

    CAS  Google Scholar 

  • Drury MR, FitzGerald JD (1998) Mantle rheology: insights from laboratory studies of deformation and phase transition. In: Jackson I (ed) The earth's mantle: composition, structure, evolution. Cambridge University Press, pp 503–559

  • Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40:333–348

    Article  CAS  Google Scholar 

  • Evans BW, Trommsdorff V, Richter W (1979) Petrology of an eclogite-metarodingite suite at Cima di Gagnone, Ticino, Switzerland. Am Mineral 64:15–31

    CAS  Google Scholar 

  • Evans BW, Trommsdorff V, Goles GG (1981) Geochemistry of high-grade eclogites and metarodingites from the Central Alps. Contrib Mineral Petrol 76:301–311

    CAS  Google Scholar 

  • Frese K, Trommsdorff V, Wenk HR, Kunze K(2001) Metamorphic origin of olivine [100] CPO's. In: de Meer S et al. (eds) Abstr Vol 13th Int Conf Deformation Mechanisms, Rheology and Tectonics, 2–4 April 2001, Noordwijkerhout, The Netherlands. Fac Earth Sci Utrecht Univ, p 53

  • Gebauer D (1996) A P-T-t path for an (ultra?-) high-pressure ultramafic/mafic rock association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps). Am Geophys Union Geophys Monogr 95

  • Gebauer D, Gruenenfelder M, Tilton G, Trommsdorff V, Schmid S (1992) The geodynamic evolution of garnet-peridotites, garnet-pyroxenites and eclogites of Alpe Arami and Cima di Gagnone (Central Alps) from early Proterozoic to Oligocene. Schweiz Mineral Petrogr Mitt 72:107–111

    Google Scholar 

  • Grond R, Pfiffner M, Wahl F (1995) Post-subductional Tertiary three stage deformation, Cima Lunga, Central Alps. Terra Abstr 7 Suppl 1:274

    Google Scholar 

  • Grubenmann U (1908) Der Granatolivinfels des Gordunotales und seine Begleitgesteine. Vierteljahresschr Naturfor Ges Zürich:129–156

  • Heinrich CA (1982) Kyanite-eclogite to amphibolite facies evolution of hydrous mafic and pelitic rocks, Adula Nappe, Central Alps. Contrib Mineral Petrol 86:359–373

    Google Scholar 

  • Hoogerduijn Strating EH (1991) The evolution of the Piemonte-Ligurian ocean. A structural study of ophiolite complexes in Liguria (NW Italy). Geol Ultraiectina 74

  • Jäger E, Niggli E, Wenk E (1967) Rb-Sr-Altersbestimmungen an Glimmern der Zentralalpen. Beitr Geol Karte Schweiz NF 134

  • Jung H, Karato SI (2001) Water-induced fabric transitions in olivine. Science 293:1460–1462

    Article  CAS  PubMed  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Littlejohn AL, Greenwood HJ (1974) Lherzolite nodules in basalts from British Columbia, Canada. Can J Earth Sci 11:1288–1308

    CAS  Google Scholar 

  • Mackwell SJ (1991) High temperature rheology of enstatite: implications for creep in the mantle. Geophys Res Lett 18:2027–2030

    CAS  Google Scholar 

  • Mainprice D (1990) A Fortran program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393

    Google Scholar 

  • Mainprice D (1999) The Unicef Careware software package. http://www.isteem.univ-montp2.fr/TECTONOPHY/petrophysics/software/petrophysics_software.html

  • Möckel JR (1969) Structural petrology of the garnet peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geol Med 42:61–130

    Google Scholar 

  • Muegge O (1898) Ueber Translationen und verwandte Erscheinungen in Krystallen. Neues Jahrb Mineral Geol U Paläontol 1:71–158

  • Müntener O (1997) The Malenco peridotites (Alps): petrology and geochemistry of subcontinental mantle and Jurassic exhumation during rifting. PhD Thesis, ETH Zürich Nr 12103

    Google Scholar 

  • Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotites—a review. Rev Geophys 25:111–123

    Google Scholar 

  • Nicolas A, Jackson ED (1972) Répartition en deux provinces des peridotites des chaines alpines longeant la Méditérranée: implications géotectoniques. Schweiz Mineral Petrogr Mitt 52:479–495

    CAS  Google Scholar 

  • Nicolas A, Poirier JP (1976) Crystalline plasticity and solid state flow in metamorphic rocks. Wiley, London

  • Nicolas A, Boudier F, Bouiller AM (1973) Mechanisms of flow in naturally and experimentally deformed peridotites: Am J Sci 273:853–876

    CAS  Google Scholar 

  • Nimis P, Trommsdorff V (2001a) Revised thermobarometry of Alpe Arami and other garnet peridotites from the Central Alps. J Petrol 42:103–115

    CAS  Google Scholar 

  • Nimis P, Trommsdorff V (2001b) Comment to 'New constraints on the P-T evolution of the Alpe Arami garnet peridotite body (Central Alps, Switzerland)' by Paquin, Altherr (2001a). J Petrol 42:1773–1779

    CAS  Google Scholar 

  • Paquin J, Altherr R (2001a) New constraints on the P-T evolution of the Alpe Arami garnet peridotite body (Central Alps, Switzerland). J Petrol 42:1119–1140

    CAS  Google Scholar 

  • Paquin J, Altherr R (2001b) 'New constraints on the P-T evolution of the Alpe Arami garnet peridotite body (Central Alps, Switzerland)': reply to comment by Nimis & Trommsdorff (2001b). J Petrol 42:1781–1787

    CAS  Google Scholar 

  • Pfiffner MA, Trommsdorff V (1998) The high-pressure ultramafic-mafic-carbonate suite of Cima Lunga-Adula, Central Alps: excursions to Cima di Gagnone and Alpe Arami. Schweiz Mineral Petrogr Mitt 78:337–354

    Google Scholar 

  • Phakey P, Dollinger G, Christie J (1972) Transmission electron microscopy of experimentally deformed olivine crystals. Geophys Monogr 16:117–138

    Google Scholar 

  • Piccardo GB, Rampone E, Vanucci R (1990) Upper mantle evolution during continental rifting and ocean formation: evidences from peridotite bodies of the western Alpine–northern Apennine system. Mém Soc Géol Fr 156:323–333

    Google Scholar 

  • Piccardo GB, Rampone E, Reusser E, Trommsdorff V (1993) Garnet peridotites and pyroxenites from the Central Alps: an ion probe investigation on their high pressure minerals. Terra Nova Abstr Suppl 4:20

    Google Scholar 

  • Prior DJ et al. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84:1741–1759

    CAS  Google Scholar 

  • Raleigh CB (1965) Glide mechanisms in experimentally deformed minerals. Science 150:739–741

    CAS  Google Scholar 

  • Ramsauer H (1941) Achsenverteilungsanalysen an Quarztektoniten. Dissertation, Universität Innsbruck, no 304

  • Riecke E (1895) Ueber das Gleichgewicht zwischen einem festen homogen deformierten Körper und einer flüssigen Phase. Ann Phys 54:731–738

    Google Scholar 

  • Risold AC, Trommsdorff V, Grobety B (2001) Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contrib Mineral Petrol 140:619–628

    CAS  Google Scholar 

  • Sander B (1950) Einführung in die Gefügekunde der geologischen Körper. Springer, Berlin Heidelberg New York

  • Schmid SM, Rück P, Schreurs G (1990) The significance of the Schams nappes for the reconstruction of the paleotectonic and orogenic evolution of the Penninic zone along the NFP-20 East traverse (Grisons, Eastern Switzerland). Mém Soc Géol Fr 156:263–287

    Google Scholar 

  • Siegesmund S, Takeshita T, Kern H (1989) Anisotropy of vp and vs in an amphibolite of deeper crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock. Tectonophysics 157:25–38

    Google Scholar 

  • Tommasi A, Mainprice D, Canova G, Chastel Y (2000) Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy. J Geophys Res 105:7893–7908

    Article  CAS  Google Scholar 

  • Trommsdorff V (1966) Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz Mineral Petrogr Mitt 46:431–460

    CAS  Google Scholar 

  • Trommsdorff V, Evans BW (1969) The stable association enstatite-forsterite-chlorite in amphibolite facies ultramafics of the Lepontine Alps. Schweiz Mineral Petrogr Mitt 49:325–332

    CAS  Google Scholar 

  • Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 54:333–352

    CAS  Google Scholar 

  • Trommsdorff V, Piccardo GB, Montrasio A (1993) From magmatism through metamorphism to sea floor emplacement of subcontinental Adria lithosphere during pre-Alpine rifting (Malenco, Italy). Schweiz Mineral Petrogr Mitt 73:191–203

    CAS  Google Scholar 

  • Trommsdorff V, Hermann J, Müntener O, Pfiffner M, Risold AC (2000) Geodynamic cycles of subcontinental lithosphere in the Central Alps and the Arami enigma. J Geodyn 30:77–92

    Article  Google Scholar 

  • Trommsdorff V, Risold AC, Reusser E, Connolly J, Ulmer P (2001) Titanian clinohumite: ilmenite rod inclusions and phase relations, Central Alps. In: Abstr Vol UHPM Worksh 2001 Fluid/Slab/Mantle Interactions and Ultrahigh-P-Minerals, 30–31 August 2001, Tokyo. Waseda University, Tokyo, p 84

  • Weidner DJ, Wang H, Ito J (1978) Elasticity of enstatite. EOS AGU 58(6):491

    Google Scholar 

  • Weiss M (1997) Clinohumite: a field and experimental study. PhD Thesis, ETH Zürich, no 12202

  • Wenk HR (1985) Preferred orientation in deformed metals and rocks; an introduction to modern texture analysis. Academic Press, Orlando, FL

  • Yoshino G (1961) Structural-petrological studies of peridotite and associated rocks of the Higashiakaishi-yama District, Shikoku, Japan. J Sci Hiroshima Univ Ser C Geol Mineral 3:343–402

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Martyn Drury and Paolo Nimis for their constructive reviews. We wish to acknowledge our colleagues M. Bystricky, J.P. Burg, L. Burlini, N. Mancktelow and H.R. Wenk for helpful discussions. Thanks go also to T. Willy and P. Wägli for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Trommsdorff.

Additional information

Editorial responsibility: J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frese, K., Trommsdorff, V. & Kunze, K. Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Central Alps). Contrib Mineral Petrol 145, 75–86 (2003). https://doi.org/10.1007/s00410-002-0434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-002-0434-x

Keywords

Navigation