Log in

Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Amplification of biosynthetic gene clusters is important to increase secondary metabolite production. However, the copy number of amplified gene clusters is difficult to control precisely. In this study, the tandem amplification of a 70 kb bleomycin biosynthetic gene cluster was precisely regulated through the combined strategy of a ZouA-dependent DNA amplification system and double-reporter-guided recombinant selection in Streptomyces verticillus ATCC15003. The production of bleomycin in the recombinant strain containing six copies of the bleomycin gene cluster was 9.59-fold higher than that in the wild-type strain. The combined strategy used in this study is powerful and applicable for precisely regulating the amplification of gene clusters and improving the corresponding secondary metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askenazi, M., Driggers, E.M., Holtzman, D.A., Norman, T.C., Iverson, S., Zimmer, D.P., Boers, M.E., Blomquist, P.R., Martinez, E.J., Monreal, A. W., et al. (2003). Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21, 150–156.

    Article  CAS  Google Scholar 

  • Boger, D.L., and Cai, H. (1999). Bleomycin: Synthetic and mechanistic studies. Angew Chem Int Ed 38, 448–476.

    Article  CAS  Google Scholar 

  • Calcutt, M.J., and Schmidt, F.J. (1994). Gene organization in the bleomycin-resistance region of the producer organism Streptomyces verticillus. Gene 151, 17–21.

    Article  CAS  Google Scholar 

  • Chen, H., Cui, J., Wang, P., Wang, X., and Wen, J. (2020). Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Microb Cell Fact 19, 32–48.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, J., Cui, J., Wang, C., Liang, S., Liu, H., and Wen, J. (2019). Negative regulation of bleomycins biosynthesis by ArsR/SmtB family repressor BlmR in Streptomyces verticillus. Appl Microbiol Biotechnol 103, 6629–6644.

    Article  CAS  Google Scholar 

  • Chen, J., and Stubbe, J.A. (2005). Bleomycins: towards better therapeutics. Nat Rev Cancer 5, 102–112.

    Article  CAS  Google Scholar 

  • Demain, A.L. (2006). From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33, 486–495.

    Article  CAS  Google Scholar 

  • Della Latta, V., Cecchettini, A., Del Ry, S., and Morales, M.A. (2015). Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res 97, 122–130.

    Article  CAS  Google Scholar 

  • Du, L., Sánchez, C., Chen, M., Edwards, D.J., and Shen, B. (2000). The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol 7, 623–642.

    Article  CAS  Google Scholar 

  • Fierro, F., Barredo, J.L., Diez, B., Gutierrez, S., Fernandez, F.J., and Martin, J.F. (1995). The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92, 6200–6204.

    Article  CAS  Google Scholar 

  • Galm, U., Wang, L., Wendt-Pienkowski, E., Yang, R., Liu, W., Tao, M., Coughlin, J.M., and Shen, B. (2008). In vivo manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 revealing new insights into its biosynthetic pathway. J Biol Chem 283, 28236–28245.

    Article  CAS  Google Scholar 

  • Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A., et al. (2008). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220.

    Article  CAS  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison Iii, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345.

    Article  CAS  Google Scholar 

  • Guan, H., Li, Y., Zheng, J., Liu, N., Zhang, J., and Tan, H. (2019). Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Sci China Life Sci 62, 1638–1654.

    Article  CAS  Google Scholar 

  • Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100, 1541–1546.

    Article  CAS  Google Scholar 

  • He, Y., Lan, Y., Liu, Y., Yu, H., Han, Z., Li, X., and Zhang, L. (2016). **yangmycin and bleomycin share the same cytotoxicity pathway. Molecules 21, 862.

    Article  Google Scholar 

  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation.

    Google Scholar 

  • Lee, H.N., Huang, J., Im, J.H., Kim, S.H., Noh, J.H., Cohen, S.N., and Kim, E.S. (2010). Putative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in Streptomyces coelicolor. Appl Environ Microbiol 76, 3039–3043.

    Article  CAS  Google Scholar 

  • Li, D., Zhang, J., Tian, Y., and Tan, H. (2019). Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Sci China Life Sci 62, 276–279.

    Article  Google Scholar 

  • Li, Y., Ling, H., Li, W., and Tan, H. (2005). Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng 7, 165–173.

    Article  Google Scholar 

  • Liao, G., Li, J., Li, L., Yang, H., Tian, Y., and Tan, H. (2010). Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb Cell Fact 9, 6–12.

    Article  Google Scholar 

  • Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.

    Article  CAS  Google Scholar 

  • Murakami, T., Burian, J., Yanai, K., Bibb, M.J., and Thompson, C.J. (2011). A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci USA 108, 16020–16025.

    Article  CAS  Google Scholar 

  • Olano, C., Lombó, F., Méndez, C., and Salas, J.A. (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10, 281–292.

    Article  CAS  Google Scholar 

  • Pan, Y., Lu, C., Dong, H., Yu, L., Liu, G., and Tan, H. (2013). Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor. Microb Cell Fact 12, 65–80.

    Article  CAS  Google Scholar 

  • Peschke, U., Schmidt, H., Zhang, H.Z., and Piepersberg, W. (1995). Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16, 1137–1156.

    Article  CAS  Google Scholar 

  • Raisfeld, I.H. (1981). Role of terminal substituents in the pulmonary toxicity of bleomycins. Toxicol Appl Pharmacol 57, 355–366.

    Article  Google Scholar 

  • Romero, J., Liras, P., and Martín, J.F. (1986). Utilization of ornithine and arginine as specific precursors of clavulanic acid. Appl Environ Microbiol 52, 892–897.

    Article  CAS  Google Scholar 

  • Santos, C.N.S., and Stephanopoulos, G. (2008). Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12, 168–176.

    Article  CAS  Google Scholar 

  • Shen, B., Du, L., Sanchez, C., Edwards, D.J., Chen, M., and Murrell, J.M. (2001). The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC15003 as a model for hybrid peptide-polyketide natural product biosynthesis. J Ind Microbiol Biotechnol 27, 378–385.

    Article  CAS  Google Scholar 

  • Shen, B., Du, L., Sanchez, C., Edwards, D.J., Chen, M., and Murrell, J.M. (2002). Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC15003. J Nat Prod 65, 422–431.

    Article  CAS  Google Scholar 

  • Takita, T., Umezawa, Y., Saito, S., Morishima, H., Umezawa, H., Muraoka, Y., Suzuki, M., Otsuka, M., Kobayashi, S., and Ohno, M. (1981). Total synthesis of deglyco-bleomycin A2. Tetrahedron Lett 22, 671–674.

    Article  CAS  Google Scholar 

  • Tao, M., Wang, L., Wendt-Pienkowski, E., George, N.P., Galm, U., Zhang, G., Coughlin, J.M., and Shen, B. (2007). The tallysomycin biosynthetic gene cluster from Streptoalloteichus hindustanus E465-94 ATCC 31158 unveiling new insights into the biosynthesis of the bleomycin family of antitumor antibiotics. Mol Biosyst 3, 60–74.

    Article  CAS  Google Scholar 

  • Umezawa, H., Maeda, K., Takeuchi, T., and Okami, Y. (1966). New antibiotics, bleomycin A and B. J Antibiot 19, 200–209.

    CAS  Google Scholar 

  • **ang, S.H., Li, J., Yin, H., Zheng, J.T., Yang, X., Wang, H.B., Luo, J.L., Bai, H., and Yang, K.Q. (2009). Application of a double-reporter-guided mutant selection method to improve clavulanic acid production in Streptomyces clavuligerus. Metab Eng 11, 310–318.

    Article  CAS  Google Scholar 

  • Yanai, K., Murakami, T., and Bibb, M. (2006). Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci USA 103, 9661–9666.

    Article  CAS  Google Scholar 

  • Zhou, T.C., Kim, B.G., and Zhong, J.J. (2014). Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 98, 7911–7922.

    Article  CAS  Google Scholar 

  • Zhu, X., Kong, J., Yang, H., Huang, R., Huang, Y., Yang, D., Shen, B., and Duan, Y. (2018). Strain improvement by combined UV mutagenesis and ribosome engineering and subsequent fermentation optimization for enhanced 6′-deoxy-bleomycin Z production. Appl Microbiol Biotechnol 102, 1651–1661.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFC2100600), the National Natural Science Foundation of China (30970072 and 31170088), and Biological Resources Programme, Chinese Academy of Sciences (KFJ-BRP-009). We are grateful to Prof. Huarong Tan (Institute of Microbiology, Chinese Academy of Sciences) for providing E. coli ET12567/pUZ8002, plasmids pIJ773 and pIJ778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

11427_2021_1998_MOESM1_ESM.pdf

Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, W., Cui, Y. et al. Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus. Sci. China Life Sci. 65, 1248–1256 (2022). https://doi.org/10.1007/s11427-021-1998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1998-8

Keywords

Navigation