Log in

A topology approach to overcome the pore size/volume trade-offs for autonomous indoor humidity control

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Autonomous indoor humidity control is gaining more and more attention but is limited by the trade-offs among pore volume, pore size and water stability of water adsorbents. We solve this problem by using a unique coordination network topology combined with hydrolytically stable M(III) carboxylate clusters. By extending the ligand length from 9.0 to 11.2 and 13.7 Å, the pore volume significantly increases from 0.99 to 1.40 and 1.78 cm3 g−1, which proportionally increases the saturated water adsorption capacity. Meanwhile, the pore size slightly increases from 10.4 to 11.0 and 13.5 Å, which restricts the isotherm inflection pressure and hysteresis width to meet the requirement of indoor humidity control. Large single-crystals suitable for X-ray diffraction studies were obtained by using Fe(III) salts, while isostructural frameworks with sufficiently high water stabilities were synthesized by using Cr(III) salts, which offer record working capacity of 0.90 and 1.10 g g−1 for indoor humidity control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen Z, Kirlikovali KO, Idrees KB, Wasson MC, Farha OK. Chem, 2022, 8: 693–716

    Article  Google Scholar 

  2. Li H, Li L, Lin RB, Zhou W, Zhang Z, **ang S, Chen B. EnergyChem, 2019, 1: 100006

    Article  Google Scholar 

  3. Cui WG, Hu TL, Bu XH. Adv Mater, 2020, 32: 1806445

    Article  Google Scholar 

  4. Wang T, Lin E, Peng YL, Chen Y, Cheng P, Zhang Z. Coord Chem Rev, 2020, 423: 213485

    Article  Google Scholar 

  5. Zhang JP, Zhu AX, Lin RB, Qi XL, Chen XM. Adv Mater, 2011, 23: 1268–1271

    Article  PubMed  Google Scholar 

  6. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Chem Soc Rev, 2014, 43: 5594–5617

    Article  PubMed  Google Scholar 

  7. Seo Y, Yoon JW, Lee JS, Hwang YK, Jun C, Chang J, Wuttke S, Bazin P, Vimont A, Daturi M, Bourrelly S, Llewellyn PL, Horcajada P, Serre C, Férey G. Adv Mater, 2011, 24: 806–810

    Article  PubMed  Google Scholar 

  8. Henninger SK, Habib HA, Janiak C. J Am Chem Soc, 2009, 131: 2776–2777

    Article  PubMed  Google Scholar 

  9. Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Microporous Mesoporous Mater, 2009, 120: 325–330

    Article  Google Scholar 

  10. de Lange MF, Verouden KJFM, Vlugt TJH, Gascon J, Kapteijn F. Chem Rev, 2015, 115: 12205–12250

    Article  PubMed  Google Scholar 

  11. Wang S, Lee JS, Wahiduzzaman M, Park J, Muschi M, Martineau-Corcos C, Tissot A, Cho KH, Marrot J, Shepard W, Maurin G, Chang JS, Serre C. Nat Energy, 2018, 3: 985–993

    Article  Google Scholar 

  12. Li B, Lu F, Gu X, Shao K, Wu E, Qian G. Adv Sci, 2022, 9: 2105556

    Article  Google Scholar 

  13. Lenzen D, Bendix P, Reinsch H, Fröhlich D, Kummer H, Möllers M, Hügenell PPC, Gläser R, Henninger S, Stock N. Adv Mater, 2017, 30: 1705869

    Article  Google Scholar 

  14. Liu X, Wang X, Kapteijn F. Chem Rev, 2020, 120: 8303–8377

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, Umans AS, Yaghi OM, Wang EN. Science, 2017, 356: 430–434

    Article  PubMed  Google Scholar 

  16. Ejeian M, Wang RZ. Joule, 2021, 5: 1678–1703

    Article  Google Scholar 

  17. Cadiau A, Belmabkhout Y, Adil K, Bhatt PM, Pillai RS, Shkurenko A, Martineau-Corcos C, Maurin G, Eddaoudi M. Science, 2017, 356: 731–735

    Article  PubMed  Google Scholar 

  18. Zhu N, Wei Z, Chen C, **ong X, **ong Y, Zeng Z, Wang W, Jiang J, Fan Y, Su C. Angew Chem Int Ed, 2022, 61: e202112097

    Article  Google Scholar 

  19. Lu FF, Gu XW, Wu E, Li B, Qian G. J Mater Chem A, 2023, 11: 1246–1255

    Article  Google Scholar 

  20. Cho KH, Borges DD, Lee UH, Lee JS, Yoon JW, Cho SJ, Park J, Lombardo W, Moon D, Sapienza A, Maurin G, Chang JS. Nat Commun, 2020, 11: 5112

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou DD, Zhang XW, Mo ZW, Xu YZ, Tian XY, Li Y, Chen XM, Zhang JP. EnergyChem, 2019, 1: 100016

    Article  Google Scholar 

  22. Zhou DD, Chen P, Wang C, Wang SS, Du Y, Yan H, Ye ZM, He CT, Huang RK, Mo ZW, Huang NY, Zhang JP. Nat Mater, 2019, 18: 994–998

    Article  PubMed  Google Scholar 

  23. Mo ZW, Zhou HL, Zhou DD, Lin RB, Liao PQ, He CT, Zhang WX, Chen XM, Zhang JP. Adv Mater, 2018, 30: 1704350

    Article  Google Scholar 

  24. Fu D, Xu Y, Zhao M, Chang Z, Bu X. Sci Bull, 2016, 61: 1255–1259

    Article  Google Scholar 

  25. Zhu B, Cao JW, Mukherjee S, Pham T, Zhang T, Wang T, Jiang X, Forrest KA, Zaworotko MJ, Chen KJ. J Am Chem Soc, 2021, 143: 1485–1492

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xue Y, Bai X, Zhang J, Wang Y, Li S, Jiang Y, Hu M, Zhai Q. Angew Chem Int Ed, 2021, 60: 10122–10128

    Article  Google Scholar 

  27. Hanikel N, Pei X, Chheda S, Lyu H, Jeong WS, Sauer J, Gagliardi L, Yaghi OM. Science, 2021, 374: 454–459

    Article  PubMed  Google Scholar 

  28. Zheng Z, Hanikel N, Lyu H, Yaghi OM. J Am Chem Soc, 2022, 144: 22669–22675

    Article  PubMed  Google Scholar 

  29. Rieth AJ, Wright AM, Rao S, Kim H, LaPotin AD, Wang EN, Dincă M. J Am Chem Soc, 2018, 140: 17591–17596

    Article  PubMed  Google Scholar 

  30. Hanikel N, Kurandina D, Chheda S, Zheng Z, Rong Z, Neumann SE, Sauer J, Siepmann JI, Gagliardi L, Yaghi OM. ACS Cent Sci, 2023, 9: 551–557

    Article  PubMed  PubMed Central  Google Scholar 

  31. Matemb Ma Ntep TJ, Reinsch H, Hügenell PPC, Ernst SJ, Hastürk E, Janiak C. J Mater Chem A, 2019, 7: 24973–24981

    Article  Google Scholar 

  32. Liu W, Wu E, Yu B, Liu Z, Wang K, Qi D, Li B, Jiang J. Angew Chem Int Ed, 2023, 62: e202305144

    Article  Google Scholar 

  33. Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S. Microporous Mesoporous Mater, 2012, 157: 89–93

    Article  Google Scholar 

  34. Towsif Abtab SM, Alezi D, Bhatt PM, Shkurenko A, Belmabkhout Y, Aggarwal H, Weseliński ŁJ, Alsadun N, Samin U, Hedhili MN, Eddaoudi M. Chem, 2018, 4: 94–105

    Article  Google Scholar 

  35. Chen Z, Li P, Zhang X, Li P, Wasson MC, Islamoglu T, Stoddart JF, Farha OK. J Am Chem Soc, 2019, 141: 2900–2905

    Article  PubMed  Google Scholar 

  36. Rieth AJ, Wright AM, Skorupskii G, Mancuso JL, Hendon CH, Dincă M. J Am Chem Soc, 2019, 141: 13858–13866

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu Z, Duan J, Tan H, Du L, Zhao X, Wang R, Kato S, Yang S, Hupp JT. J Am Chem Soc, 2023, 145: 4150–4157

    Article  Google Scholar 

  38. Gong W, Chen X, Wahiduzzaman M, **e H, Kirlikovali KO, Dong J, Maurin G, Farha OK, Cui Y. J Am Chem Soc, 2024, 146: 2141–2150

    Article  PubMed  Google Scholar 

  39. Wei YS, Zhang M, Liao PQ, Lin RB, Li TY, Shao G, Zhang JP, Chen XM. Nat Commun, 2015, 6: 8348

    Article  PubMed  Google Scholar 

  40. Zhao X, Bu X, Zhai QG, Tran H, Feng P. J Am Chem Soc, 2015, 137: 1396–1399

    Article  PubMed  Google Scholar 

  41. Yang H, Peng F, Hong AN, Wang Y, Bu X, Feng P. J Am Chem Soc, 2021, 143: 14470–14474

    Article  PubMed  Google Scholar 

  42. Amoroso AJ, Maher JP, McCleverty JA, Ward MD. J Chem Soc Chem Commun, 1994, 1273

  43. Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M. Microporous Mesoporous Mater, 2012, 149: 134–141

    Article  Google Scholar 

  44. Jia J, Sun F, Borjigin T, Ren H, Zhang T, Bian Z, Gao L, Zhu G. Chem Commun, 2012, 48: 6010

    Article  Google Scholar 

  45. **ao Y, Chen Y, Hong AN, Bu X, Feng P. Angew Chem Int Ed, 2023, 62: e202300721

    Article  Google Scholar 

  46. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC. Adv Mater, 2018, 30: 1704303

    Article  Google Scholar 

  47. Wang J, Zhang Y, Li M, Yan S, Li D, Zhang X. Angew Chem Int Ed, 2017, 56: 6478–6482

    Article  Google Scholar 

  48. Zhang J, Li P, Zhang X, Ma X, Wang B. ACS Appl Mater Interfaces, 2020, 12: 46057–46064

    Article  PubMed  Google Scholar 

  49. Deria P, Chung YG, Snurr RQ, Hupp JT, Farha OK. Chem Sci, 2015, 6: 5172–5176

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lv XL, Yuan S, **e LH, Darke HF, Chen Y, He T, Dong C, Wang B, Zhang YZ, Li JR, Zhou HC. J Am Chem Soc, 2019, 141: 10283–10293

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22090061, 22231012, 21821003, 22071272).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Dong Zhou or Jie-Peng Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2024_2062_MOESM1_ESM.pdf

Supporting Information: A topology approach to overcome the pore size/volume trade-offs for autonomous indoor humidity control

Supplementary material, approximately 4.53 MB.

Supplementary material, approximately 282 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZS., Zhang, XW., Zheng, K. et al. A topology approach to overcome the pore size/volume trade-offs for autonomous indoor humidity control. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-2062-3

Navigation