Log in

Mesostructured carbon-based nanocages: an advanced platform for energy chemistry

  • Reviews
  • SPECIAL ISSUE: Celebrating the 100th Anniversary of Chemical Sciences in Nan**g University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The electrochemistry in energy conversion and storage (ECS) not only relies on the active species in catalysts or energy-storage materials, but also involves mass/ion transport around the active species and electron transfer to the external circuit. To realize high-rate ECS process, new architectures for catalysts or energy-storage electrodes are required to ensure more efficient mass/charge transport. 3D porous mesostructured materials constructed by nanoscale functional units can form a continuous conductive network for electron transfer and an interconnected multiscale pores for mass/ion transport while maintaining the high surface area, showing great promise in boosting the ECS process. In this review, we summarize the recent progress on the design, construction and applications of 3D mesostructured carbon-based nanocages for ECS. The role of the hierarchical architectures to the high rate performance is discussed to highlight the merits of the mesostructured materials. The perspective on future opportunities and challenges is also outlined for deepening and extending the related studies and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N. Nat Mater, 2017, 16: 16–22

    Google Scholar 

  2. De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. Science, 2019, 364: eaav3506

    CAS  PubMed  Google Scholar 

  3. Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X. Nat Rev Mater, 2019, 4: 45–60

    Google Scholar 

  4. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Science, 2019, 366: eaan8285

    CAS  PubMed  Google Scholar 

  5. Li G, Huang B, Pan Z, Su X, Shao Z, An L. Energy Environ Sci, 2019, 12: 2030–2053

    CAS  Google Scholar 

  6. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature, 1985, 318: 162–163

    CAS  Google Scholar 

  7. Iijima S. Nature, 1991, 354: 56–58

    CAS  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    CAS  PubMed  Google Scholar 

  9. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem Commun, 2010, 46: 3256–3258

    CAS  Google Scholar 

  10. Wu Q, Yang L, Wang X, Hu Z. Adv Mater, 2019, 1904177

  11. Tian H, Liang J, Liu J. Adv Mater, 2019, 31: 1903886

    CAS  Google Scholar 

  12. Zhang X, Zhu Y, Bruck AM, Housel LM, Wang L, Quilty CD, Takeuchi KJ, Takeuchi ES, Marschilok AC, Yu G. Energy Storage Mater, 2019, 19: 439–445

    CAS  Google Scholar 

  13. Lyu Z, Xu D, Yang L, Che R, Feng R, Zhao J, Li Y, Wu Q, Wang X, Hu Z. Nano Energy, 2015, 12: 657–665

    CAS  Google Scholar 

  14. Service RF. Science, 2012, 335: 1167–1168

    CAS  PubMed  Google Scholar 

  15. Hemminger J, Crabtree G, Sarrao J. From quanta to the continuum: opportunities for mesoscale science. A report from the Basic Energy Science Advisory Committee. US: Department of Energy, 2012

    Google Scholar 

  16. Lang X, Hirata A, Fujita T, Chen M. Nat Nanotech, 2011, 6: 232–236

    CAS  Google Scholar 

  17. Lu Q, Lattanzi MW, Chen Y, Kou X, Li W, Fan X, Unruh KM, Chen JG, **ao JQ. Angew Chem Int Ed, 2011, 50: 6847–6850

    CAS  Google Scholar 

  18. Parlett CMA, Wilson K, Lee AF. Chem Soc Rev, 2013, 42: 3876–3893

    CAS  PubMed  Google Scholar 

  19. Shi H, Fang Z, Zhang X, Li F, Tang Y, Zhou Y, Wu P, Yu G. Nano Lett, 2018, 18: 3193–3198

    CAS  PubMed  Google Scholar 

  20. Wu Q, Yang L, Wang X, Hu Z. Acc Chem Res, 2017, 50: 435–444

    CAS  PubMed  Google Scholar 

  21. Ugarte D. Nature, 1992, 359: 707–709

    CAS  PubMed  Google Scholar 

  22. Kroto HW. Nature, 1992, 359: 670–671

    Google Scholar 

  23. Saito Y, Yoshikawa T, Okuda M, Ohkohchi M, Ando Y, Kasuya A, Nishina Y. Chem Phys Lett, 1993, 209: 72–76

    CAS  Google Scholar 

  24. Saito Y, Yoshikawa T, Okuda M, Fujimoto N, Sumiyama K, Suzuki K, Kasuya A, Nishina Y. J Phys Chem Solids, 1993, 54: 1849–1860

    CAS  Google Scholar 

  25. Yosida Y, Shida S, Ohsuna T, Shiraga N. J Appl Phys, 1994, 76: 4533–4539

    CAS  Google Scholar 

  26. Seraphin S, Zhou D, Jiao J. J Appl Phys, 1996, 80: 2097–2104

    CAS  Google Scholar 

  27. Messina G, Santangelo S. Carbon, the Future Material for Advanced Technology Applications. In: Ascheron CE, Koelsch HJ, Duhm AH, Eds. Topics in Applied Physics. Volume 100. Berlin Heidelberg: Springer-Verlag, 2006. 187–216

    Google Scholar 

  28. Jang J, Lim B. Adv Mater, 2002, 14: 1390–1393

    CAS  Google Scholar 

  29. Lee KT, Jung YS, Oh SM. J Am Chem Soc, 2003, 125: 5652–5653

    CAS  PubMed  Google Scholar 

  30. Chai GS, Yoon SB, Kim JH, Yu JS. Chem Commun, 2004, 23: 2766–2767

    Google Scholar 

  31. Wang XZ, Qian MJ, **ao P, Jiang XF, Jian GQ, Hu Z. Chinese Patent. ZL200810023448.X. 2010-02-03

  32. **e K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z. Adv Mater, 2012, 24: 347–352

    CAS  PubMed  Google Scholar 

  33. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z. Adv Mater, 2012, 24: 5593–5597

    CAS  PubMed  Google Scholar 

  34. Zhao J, Lai H, Lyu Z, Jiang Y, **e K, Wang X, Wu Q, Yang L, ** Z, Ma Y, Liu J, Hu Z. Adv Mater, 2015, 27: 3541–3545

    CAS  PubMed  Google Scholar 

  35. Bu Y, Sun T, Cai Y, Du L, Zhuo O, Yang L, Wu Q, Wang X, Hu Z. Adv Mater, 2017, 29: 1700470

    Google Scholar 

  36. Du L, Wu Q, Yang L, Wang X, Che R, Lyu Z, Chen W, Wang X, Hu Z. Nano Energy, 2019, 57: 34–40

    CAS  Google Scholar 

  37. Shen L, Sun T, Zhuo O, Che R, Li D, Ji Y, Bu Y, Wu Q, Yang L, Chen Q, Wang X, Hu Z. ACS Appl Mater Interfaces, 2016, 8: 16664–16669

    CAS  PubMed  Google Scholar 

  38. Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, Wang X, Wu Q, Ma J, Hu Z. ACS Catal, 2015, 5: 6707–6712

    CAS  Google Scholar 

  39. Zhang Z, Wu Q, Mao K, Chen Y, Du L, Bu Y, Zhuo O, Yang L, Wang X, Hu Z. ACS Catal, 2018, 8: 8477–8483

    CAS  Google Scholar 

  40. Zhang Z, Chen Y, Zhou L, Chen C, Han Z, Zhang B, Wu Q, Yang L, Du L, Bu Y, Wang P, Wang X, Yang H, Hu Z. Nat Commun, 2019, 10: 1657

    PubMed  PubMed Central  Google Scholar 

  41. Zhuo O, Yang L, Gao F, Xu B, Wu Q, Fan Y, Zhang Y, Jiang Y, Huang R, Wang X, Hu Z. Chem Sci, 2019, 10: 6083–6090

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Du L, Cheng X, Gao F, Li Y, Bu Y, Zhang Z, Wu Q, Yang L, Wang X, Hu Z. Chem Commun, 2019, 55: 6365–6368

    CAS  Google Scholar 

  43. Fan H, Wang Y, Gao F, Yang L, Liu M, Du X, Wang P, Yang L, Wu Q, Wang X, Hu Z. J Energy Chem, 2019, 34: 64–71

    Google Scholar 

  44. Cai S, Meng Z, Tang H, Wang Y, Tsiakaras P. Appl Catal B-Environ, 2017, 217: 477–484

    CAS  Google Scholar 

  45. Woo SW, Dokko K, Sasajima K, Takei T, Kanamura K. Chem Commun, 2006, 4099–4101

  46. Chen M, Su Z, Jiang K, Pan Y, Zhang Y, Long D. J Mater Chem A, 2019, 7: 6250–6258

    CAS  Google Scholar 

  47. Chen Z, Ye S, Evans SD, Ge Y, Zhu Z, Tu Y, Yang X. Small, 2018, 14: 1704015

    Google Scholar 

  48. Zhang R, Hummelgård M, Olin H. Carbon, 2010, 48: 424–430

    Google Scholar 

  49. Zhang H, Gai P, Cheng R, Wu L, Zhang X, Chen J. Anal Methods, 2013, 5: 3591–3600

    CAS  Google Scholar 

  50. Zhang J, Yang CP, Yin YX, Wan LJ, Guo YG. Adv Mater, 2016, 28: 9539–9544

    CAS  PubMed  Google Scholar 

  51. Wang X, Li Y, Du L, Gao F, Wu Q, Yang L, Chen Q, Wang X, Hu Z. Acta Chim Sin, 2018, 76: 627–632

    CAS  Google Scholar 

  52. Zhang H, Cao G, Yang Y. Energy Environ Sci, 2009, 2: 932–943

    CAS  Google Scholar 

  53. Sun Y, Wu Q, Shi G. Energy Environ Sci, 2011, 4: 1113–1132

    CAS  Google Scholar 

  54. Liu J, Wang X, Gao J, Zhang Y, Lu Q, Liu M. Electrochim Acta, 2016, 211: 183–192

    CAS  Google Scholar 

  55. Shao J, Song M, Wu G, Zhou Y, Wan J, Ren X, Ma F. Energy Storage Mater, 2018, 13: 57–65

    Google Scholar 

  56. Wu ZS, Parvez K, Feng X, Müllen K. Nat Commun, 2013, 4: 2487

    PubMed  Google Scholar 

  57. Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z. Adv Mater, 2017, 29: 1604569

    Google Scholar 

  58. Yang X, Cheng C, Wang Y, Qiu L, Li D. Science, 2013, 341: 534–537

    CAS  PubMed  Google Scholar 

  59. Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X. Nat Commun, 2014, 5: 4554

    CAS  PubMed  Google Scholar 

  60. Ma Q, Yao Y, Yan M, Zhao J, Ge C, Wu Q, Yang L, Wang X, Hu Z. Sci China Mater, 2019, 62: 1393–1402

    CAS  Google Scholar 

  61. Zhang G, Ren L, Hu D, Zhang S, Gu H. J Alloys Compd, 2019, 781: 407–414

    CAS  Google Scholar 

  62. Lin TW, Hsiao MC, Wang AY, Lin JY. ChemElectroChem, 2017, 4: 620–627

    CAS  Google Scholar 

  63. Lyu Z, Yang L, Xu D, Zhao J, Lai H, Jiang Y, Wu Q, Li Y, Wang X, Hu Z. Nano Res, 2015, 8: 3535–3543

    CAS  Google Scholar 

  64. Zang J, Chen JJ, Zhang CL, Qian H, Zheng MS, Dong QF. J Mater Chem A, 2014, 2: 6343–6347

    CAS  Google Scholar 

  65. Zhang S, Wang G, Zhang Z, Wang B, Bai J, Wang H. Small, 2019, 15: 1900565

    Google Scholar 

  66. Zeng X, Ding Z, Ma C, Wu L, Liu J, Chen L, Ivey DG, Wei W. ACS Appl Mater Interfaces, 2016, 8: 18841–18848

    CAS  PubMed  Google Scholar 

  67. Liu M, Fan H, Zhuo O, Du X, Yang L, Wang P, Yang L, Wu Q, Wang X, Hu Z. Chem Eur J, 2019, 25: 3843–3848

    CAS  PubMed  Google Scholar 

  68. Liu M, Fan H, Zhuo O, Chen J, Wu Q, Yang L, Peng L, Wang X, Che R, Hu Z. Nano Energy, 2020, 68: 104368

    CAS  Google Scholar 

  69. Wang N, Bai Z, Fang Z, Zhang X, Xu X, Du Y, Liu L, Dou S, Yu G. ACS Mater Lett, 2019, 1: 265–271

    CAS  Google Scholar 

  70. Seh ZW, Sun Y, Zhang Q, Cui Y. Chem Soc Rev, 2016, 45: 5605–5634

    CAS  PubMed  Google Scholar 

  71. Li Z, Wu HB, Lou (David) XW. Energy Environ Sci, 2016, 9: 3061–3070

    CAS  Google Scholar 

  72. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Angew Chem Int Ed, 2011, 50: 5904–5908

    CAS  Google Scholar 

  73. Zhu X, Ye J, Lu Y, Jia X. ACS Sustain Chem Eng, 2019, 7: 11241–11249

    CAS  Google Scholar 

  74. Cai J, Zhang Z, Yang S, Min Y, Yang G, Zhang K. Electrochim Acta, 2019, 295: 900–909

    CAS  Google Scholar 

  75. Ma Z, **g F, Fan Y, Li J, Zhao Y, Shao G. J Alloys Compd, 2019, 789: 71–79

    CAS  Google Scholar 

  76. Liu T, Dai C, Jia M, Liu D, Bao SJ, Jiang J, Xu M, Li CM. ACS Appl Mater Interfaces, 2016, 8: 16063–16070

    CAS  PubMed  Google Scholar 

  77. Lu YC, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y. Energy Environ Sci, 2013, 6: 750–768

    CAS  Google Scholar 

  78. Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J. Adv Funct Mater, 2015, 25: 6913–6920

    CAS  Google Scholar 

  79. Wang L, Lyu Z, Gong L, Zhang J, Wu Q, Wang X, Huo F, Huang W, Hu Z, Chen W. ChemNanoMat, 2017, 3: 415–419

    CAS  Google Scholar 

  80. Jiang X, Wang X, Shen L, Wu Q, Wang Y, Ma Y, Wang X, Hu Z. Chin J Catal, 2016, 37: 1149–1155

    CAS  Google Scholar 

  81. Fan H, Mao K, Liu M, Zhuo O, Zhao J, Sun T, Jiang Y, Du X, Zhang X, Wu Q, Che R, Yang L, Wu Q, Wang X, Hu Z. J Mater Chem A, 2018, 6: 21313–21319

    CAS  Google Scholar 

  82. Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594–3657

    CAS  PubMed  Google Scholar 

  83. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H. Chem Rev, 2015, 115: 3433–3467

    CAS  PubMed  Google Scholar 

  84. Gasteiger HA, Marković NM. Science, 2009, 324: 48–49

    CAS  PubMed  Google Scholar 

  85. Fang B, Kim JH, Kim M, Kim M, Yu JS. Phys Chem Chem Phys, 2009, 11: 1380–1387

    CAS  PubMed  Google Scholar 

  86. Jiang L, Mi L, Wang K, Wu Y, Li Y, Liu A, Zhang Y, Hu Z, Liu S. ACS Appl Mater Interfaces, 2017, 9: 31968–31976

    CAS  PubMed  Google Scholar 

  87. Sun T, Wu Q, Che R, Bu Y, Jiang Y, Li Y, Yang L, Wang X, Hu Z. ACS Catal, 2015, 5: 1857–1862

    CAS  Google Scholar 

  88. Sun T, Wu Q, Zhuo O, Jiang Y, Bu Y, Yang L, Wang X, Hu Z. Nanoscale, 2016, 8: 8480–8485

    CAS  PubMed  Google Scholar 

  89. Gong K, Du F, **a Z, Durstock M, Dai L. Science, 2009, 323: 760–764

    CAS  PubMed  Google Scholar 

  90. Dai LM. Carbon-Based Metal-Free Catalysts: Design and Applications. Weinheim: Wiley-VCH, 2018

    Google Scholar 

  91. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Adv Mater, 2019, 31: 1804799

    Google Scholar 

  92. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Angew Chem Int Ed, 2011, 50: 7132–7135

    CAS  Google Scholar 

  93. Wu Z, Liu R, Wang J, Zhu J, **ao W, Xuan C, Lei W, Wang D. Nanoscale, 2016, 8: 19086–19092

    CAS  PubMed  Google Scholar 

  94. Zhu J, Zhou H, Zhang C, Zhang J, Mu S. Nanoscale, 2017, 9: 13257–13263

    CAS  PubMed  Google Scholar 

  95. Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, **ao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X. Nat Catal, 2019, 2: 688–695

    CAS  Google Scholar 

  96. Zhang J, Ma L, Gan M, Yang F, Fu S, Li X. J Power Sources, 2015, 288: 42–52

    CAS  Google Scholar 

  97. Peng Y, Lu B, Chen S. Adv Mater, 2018, 30: 1801995

    Google Scholar 

  98. Zhang L, Doyle-Davis K, Sun X. Energy Environ Sci, 2019, 12: 492–517

    CAS  Google Scholar 

  99. Wu J, **ong L, Zhao B, Liu M, Huang L. Small Methods, 2020, 4: 1900540

    CAS  Google Scholar 

  100. Jia N, Weng Q, Shi Y, Shi X, Chen X, Chen P, An Z, Chen Y. Nano Res, 2018, 11: 1905–1916

    CAS  Google Scholar 

  101. Lu Z, Wang J, Huang S, Hou Y, Li Y, Zhao Y, Mu S, Zhang J, Zhao Y. Nano Energy, 2017, 42: 334–340

    CAS  Google Scholar 

  102. Shen J, Wu H, Sun W, Qiao J, Cai H, Wang Z, Sun K. Chem Eng J, 2019, 358: 340–350

    CAS  Google Scholar 

  103. Chen S, Cheng J, Ma L, Zhou S, Xu X, Zhi C, Zhang W, Zhi L, Zapien JA. Nanoscale, 2018, 10: 10412–10419

    CAS  PubMed  Google Scholar 

  104. Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Science, 2012, 335: 835–838

    Google Scholar 

  105. Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang P. J Am Chem Soc, 2017, 139: 9359–9363

    CAS  PubMed  Google Scholar 

  106. Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan X. Science, 2019, 364: 1057–1062

    CAS  PubMed  Google Scholar 

  107. Xu J, Liu C, Hsu PC, Zhao J, Wu T, Tang J, Liu K, Cui Y. Nat Commun, 2019, 10: 2440

    PubMed  PubMed Central  Google Scholar 

  108. Wan S, Wan H, Bi H, Zhu J, He L, Yin K, Su S, Sun L. Nanoscale, 2018, 10: 17015–17020

    CAS  PubMed  Google Scholar 

  109. Lai H, Wu Q, Zhao J, Shang L, Li H, Che R, Lyu Z, **ong J, Yang L, Wang X, Hu Z. Energy Environ Sci, 2016, 9: 2053–2060

    CAS  Google Scholar 

  110. Shang L, Li H, Lai H, Li D, Wu Q, Yang L, Wang X, Hu Z. J Power Sources, 2016, 326: 279–284

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0206500, 2018YFA0209103), and the National Natural Science Foundation of China (21832003, 21773111, 51571110, 21573107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Hu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Yang, L., Wang, X. et al. Mesostructured carbon-based nanocages: an advanced platform for energy chemistry. Sci. China Chem. 63, 665–681 (2020). https://doi.org/10.1007/s11426-020-9748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9748-0

Navigation