Log in

A finger-inspired pneumatic network actuator based on rigid-flexible coupling structure for soft robotic grippers

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Inspired by the morphology of human finger, this study proposed a pneumatic network actuator for soft robotics gripper with rigid-flexible coupling and stepped chamber structure to improve the grasp stability and strength under low air pressure. The actuator adopts a segmented structure and has two independent chambers that can be driven, respectively. The distal segment of the soft actuator adopted a stepped chamber structure with a varying height which mimicked the shape of a human fingertip like a cone to increase the contact area between the object and the soft actuator. The proximal segment of the soft actuator utilizes the rigid-flexible coupling structure which draws inspiration from the interlacing of the ligaments and bones of human finger to enhance the output force of existing pneumatic network actuators. First of all, the structure of the pneumatic network actuator, the distal segment, the proximal segment, and the restriction layer structure were designed through theoretical derivations and finite element simulations. The response surface methodology was then utilized to optimize the dimensional aspects of the soft actuator's structure to further improve the performance of the actuator. Then, a prototype was fabricated based on the optimization results, and experiments were performed to assess the bending angles and output forces, which can reach 244.26°and 3.25 N, respectively. Finally, utilizing the soft actuator, two-finger and three-finger grippers were assembled, which are able to effectively grasp various objects in different gras** modes. These grippers exhibit advantages such as a sufficiently large contact area, high output force, reliable gras**, strong adaptability, and a wide range of gras** capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang H, Kumar AS, Chen F et al (2019) Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands. IEEE/ASME Trans Mechatron 24:120–131. https://doi.org/10.1109/TMECH.2018.2874067

    Article  Google Scholar 

  2. Cao Y (2012) Review of soft-bodied robots. JME 48:25–33. https://doi.org/10.3901/JME.2012.03.025

    Article  Google Scholar 

  3. Shintake J, Cacucciolo V, Floreano D, Shea H (2018) Soft robotic grippers. Adv Mater 30:1707035. https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

  4. Li Y, Chen Y, Yang Y, Wei Y (2017) Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans Robot 33:446–455. https://doi.org/10.1109/TRO.2016.2636899

    Article  Google Scholar 

  5. Mei D, Yu X, Tang G et al (2023) Blue hand: a novel type of soft anthropomorphic hand based on pneumatic series-parallel mechanism. IEEE Robot Autom Lett 8:7615–7622. https://doi.org/10.1109/LRA.2023.3320906

    Article  Google Scholar 

  6. Wei Q, Xu H, Sun F et al (2022) Biomimetic fiber reinforced dual-mode actuator for soft robots. Sens Actuators A 344:113761. https://doi.org/10.1016/j.sna.2022.113761

    Article  Google Scholar 

  7. Guan Q, Liu L, Sun J et al (2023) Multifunctional soft stackable robots by netting–rolling–splicing pneumatic artificial muscles. Soft Rob 10:1001–1014. https://doi.org/10.1089/soro.2022.0104

    Article  Google Scholar 

  8. Drotman D, Ishida M, Jadhav S, Tolley MT (2019) Application-driven design of soft, 3-D printed, pneumatic actuators with bellows. IEEE/ASME Trans Mechatron 24:78–87. https://doi.org/10.1109/TMECH.2018.2879299

    Article  Google Scholar 

  9. Phodapol S, Harnkhamen A, Asawalertsak N et al (2023) Insect tarsus-inspired compliant robotic gripper with soft adhesive pads for versatile and stable object gras**. IEEE Robot Autom Lett 8:2486–2493. https://doi.org/10.1109/LRA.2023.3251186

    Article  Google Scholar 

  10. Wang R, Zhang X, Zhu B et al (2020) Topology optimization of a cable-driven soft robotic gripper. Struct Multidiscip Optim 62:2749–2763. https://doi.org/10.1007/s00158-020-02619-y

    Article  Google Scholar 

  11. Jang S, Park S (2023) 4D printed untethered milli-gripper fabricated using a biodegradable and biocompatible electro- and magneto-active hydrogel. Sens Actuators B Chem 384:133654. https://doi.org/10.1016/j.snb.2023.133654

    Article  Google Scholar 

  12. Song J, Feng Y, Hong Z et al (2023) Octopus-inspired adaptable soft grippers based on 4D printing: numerical modeling, inverse design, and experimental validation. Adv Intell Syst 5:2200384. https://doi.org/10.1002/aisy.202200384

    Article  Google Scholar 

  13. Gu T, Bi H, Sun H et al (2023) Design and development of 4D-printed cellulose nanofibers reinforced shape memory polymer composites: application for self-deforming plant bionic soft grippers. Addit Manuf 70:103544. https://doi.org/10.1016/j.addma.2023.103544

    Article  Google Scholar 

  14. Wang W, Tang Y, Li C (2021) Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects. Int J Mech Sci 193:106181. https://doi.org/10.1016/j.ijmecsci.2020.106181

    Article  Google Scholar 

  15. Dragusanu M, Marullo S, Malvezzi M et al (2022) The dressgripper: a collaborative gripper with electromagnetic fingertips for dressing assistance. IEEE Robot Autom Lett 7:7479–7486. https://doi.org/10.1109/LRA.2022.3183756

    Article  Google Scholar 

  16. Mao G, Schiller D, Danninger D et al (2022) Ultrafast small-scale soft electromagnetic robots. Nat Commun 13:1–11. https://doi.org/10.1038/s41467-022-32123-4

    Article  Google Scholar 

  17. Lee Y, Koehler F, Dillon T et al (2023) Magnetically actuated fiber-based soft robots. Adv Mater 35:2301916. https://doi.org/10.1002/adma.202301916

    Article  Google Scholar 

  18. El-Atab N, Mishra RB, Al-Modaf F et al (2020) Soft actuators for soft robotic applications: a review. Adv Intell Syst 2:2070102. https://doi.org/10.1002/aisy.202070102

    Article  Google Scholar 

  19. Wang T (2017) Soft robotics: structure, actuation, sensing and control. JME 53:1–13. https://doi.org/10.3901/JME.2017.13.001

    Article  Google Scholar 

  20. Mosadegh B, Polygerinos P, Keplinger C et al (2014) Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater 24:2163–2170. https://doi.org/10.1002/adfm.201303288

    Article  Google Scholar 

  21. Al Abeach LAT, Nefti-Meziani S, Davis S (2017) Design of a variable stiffness soft dexterous gripper. Soft Rob 4:274–284. https://doi.org/10.1089/soro.2016.0044

    Article  Google Scholar 

  22. Tsimbo Fokou MR, **a Q, ** H et al (2023) A soft robotic fish actuated by artificial muscle modules (SoRoFAAM-1). J Bionic Eng 20:2030–2043. https://doi.org/10.1007/s42235-023-00390-6

    Article  Google Scholar 

  23. Chen X, Zhu W, Liang W et al (2022) Control of antagonistic McKibben muscles via a bio-inspired approach. J Bionic Eng 19:1771–1789. https://doi.org/10.1007/s42235-022-00225-w

    Article  Google Scholar 

  24. Chen Z, Zou A, Qin Z et al (2021) Modeling and fabrication of soft actuators based on fiber-reinforced elastomeric enclosures. Actuators 10:127. https://doi.org/10.3390/act10060127

    Article  Google Scholar 

  25. Ilievski F, Mazzeo AD, Shepherd RF et al (2011) Soft Robotics for Chemists. Angew Chem Int Ed 50:1890–1895. https://doi.org/10.1002/anie.201006464

    Article  Google Scholar 

  26. Polygerinos P, Lyne S, Zheng Wang, et al (2013) Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Tokyo, pp 1512–1517

  27. Li H, Yao J, Zhou P et al (2020) High-force soft pneumatic actuators based on novel casting method for robotic applications. Sens Actuators A 306:111957. https://doi.org/10.1016/j.sna.2020.111957

    Article  Google Scholar 

  28. Park W, Seo S, Bae J (2019) A hybrid gripper with soft material and rigid structures. IEEE Robot Autom Lett 4:65–72. https://doi.org/10.1109/LRA.2018.2878972

    Article  Google Scholar 

  29. Liu S, Wang F, Liu Z et al (2020) A two-finger soft-robotic gripper with envelo** and pinching gras** modes. IEEE/ASME Trans Mechatron 26:146–155. https://doi.org/10.1109/TMECH.2020.3005782

    Article  Google Scholar 

  30. Cui Y, Liu X-J, Dong X et al (2021) Enhancing the universality of a pneumatic gripper via continuously adjustable initial grasp postures. IEEE Trans Rob 37:1604–1618. https://doi.org/10.1109/TRO.2021

    Article  Google Scholar 

  31. Zheng H, Cheng Y, Wang X et al (2023) A highly adaptable flexible soft glove consisting of multimode deformable soft finger. J Bionic Eng 20:1555–1568. https://doi.org/10.1007/s42235-023-00338-w

    Article  Google Scholar 

  32. Glick P, Suresh SA, Ruffatto D et al (2018) A soft robotic gripper with gecko-inspired adhesive. IEEE Robot Autom Lett 3:903–910. https://doi.org/10.1109/LRA.2018.2792688

    Article  Google Scholar 

  33. Hirose S, Umetani Y (1978) The development of soft gripper for the versatile robot hand. Mech Mach Theory 13:351–359. https://doi.org/10.1016/0094-114X(78)90059-9

    Article  Google Scholar 

  34. Fang D, Jia G, Wu J et al (2023) A novel worm-like in-pipe robot with the rigid and soft structure. J Bionic Eng 20:2559–2569. https://doi.org/10.1007/s42235-023-00395-1

    Article  Google Scholar 

  35. He Z, Lian B, Song Y (2023) Rigid-soft coupled robotic gripper for adaptable gras**. J Bionic Eng 20:2601–2618. https://doi.org/10.1007/s42235-023-00405-2

    Article  Google Scholar 

  36. Berger PD, Maurer RE, Celli GB (2018) Experimental design. Springer, Cham

    Book  Google Scholar 

  37. Kayaroganam P (2021) Response surface methodology in engineering science. IntechOpen, New York

    Book  Google Scholar 

  38. Elsayed Y, Vincensi A, Lekakou C et al (2014) Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Rob 1:255–262. https://doi.org/10.1089/soro.2014.0016

    Article  Google Scholar 

  39. Dammer G, Gablenz S, Hildebrandt A, et al (2018) Design and shape optimization of PolyJet bellows actuators. In: 2018 IEEE international conference on soft robotics (RoboSoft). IEEE, Livorno, pp 282–287. https://doi.org/10.1109/ROBOSOFT.2018.8404933

  40. Connolly F, Walsh CJ, Bertoldi K (2017) Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc Natl Acad Sci 114:51–56. https://doi.org/10.1073/pnas.1615140114

    Article  Google Scholar 

  41. Wang Z, Hirai S (2018) Geometry and material optimization of a soft pneumatic gripper for handling deformable object. In: 2018 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, Kuala Lumpur, Malaysia, pp 612–617. https://doi.org/10.1109/ROBIO.2018.8665234

Download references

Acknowledgements

This research was supported by the Ministry of Education Joint Fund (8091B032250) the Fundamental Research Funds for the Central Universities (B230202011 and B230205024), the National Natural Science Foundation of China (51975184). The authors gratefully acknowledge the supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjie Wang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interests with respect to the research, authorship, and/or publication of this article.

Data availability

The data that support the findings of this study is available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 464 kb)

Supplementary file2 (MP4 9122 kb)

Supplementary file3 (MP4 12019 kb)

Supplementary file4 (MP4 9302 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Mei, D., Wang, J. et al. A finger-inspired pneumatic network actuator based on rigid-flexible coupling structure for soft robotic grippers. Intel Serv Robotics (2024). https://doi.org/10.1007/s11370-024-00543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11370-024-00543-4

Keywords

Navigation