Log in

A Highly Adaptable Flexible Soft Glove Consisting of Multimode Deformable Soft Finger

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This work presents a novel highly adaptable flexible soft glove composed of multimode deformable three-jointed soft fingers. The soft fingers are assembled by soft actuators and plastic materials that can be driven and controlled with single Degree of Freedom (DOF). A variety of different soft actuators are used as joint drive components to meet the motion requirements of fingers under different working conditions. We established a theoretical model to describe the deflection of the soft actuators based on reciprocal theorems. In addition, the finite-element method (FEM) was used to simulate the curvature change of the soft actuator and the soft finger, the soft actuators theoretical and simulation results were verified by experiments, and the multimode deformable soft fingers were simulated by FEM. Finally, a five-finger soft rehabilitation glove was prototyped and presented experimentally where the flexibility and functionality endowed by the soft fingers were demonstrated and highlighted. The versatility was also showcased in the applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Hawkes, E. W., Majidi, C., & Tolley, M. T. (2021). Hard questions for soft robotics. Science Robotics, 6, eabg6049.

    Article  Google Scholar 

  2. Rich, S. I., Wood, R. J., & Majidi, C. (2018). Untethered soft robotics. Nature Electronics, 1, 102–112.

    Article  Google Scholar 

  3. Li, S., Bai, H., Shepherd, R. F., & Zhao, H. C. (2019). Bio-inspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces. Angewandte Chemie-International Edition, 58, 11182–11204.

    Article  Google Scholar 

  4. Shen, Z. Q., Chen, F. F., Zhu, X. Y., Yong, K. T., & Gu, G. Y. (2020). Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B, 8, 8972–8991.

    Article  Google Scholar 

  5. Tang, Y. C., Chi, Y. D., Sun, J. F., Huang, T. H., Maghsoudi, O. H., Spence, A. J., Zhao, J. G., Sun, H., & Yin, J. (2020). Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots. Science Advances, 6, eaaz6912.

    Article  Google Scholar 

  6. Li, Y. Y., Cong, M., Liu, D., & Du, Y. (2022). Modeling and analysis of soft bionic fingers for contact state estimation. Journal of Bionic Engineering, 19, 1699–1711.

    Article  Google Scholar 

  7. Hashem, R., Stommel, M., Cheng, L. K., & Xu, W. L. (2021). Design and characterization of a bellows-driven soft pneumatic actuator. IEEE-ASME Transactions on Mechatronics, 26, 2327–2338.

    Article  Google Scholar 

  8. Jones, T. J., Etienne, J. P., Marthelot, J., & Brun, P. T. (2021). Bubble casting soft robotics. Nature, 599, 229–233.

    Article  Google Scholar 

  9. Khan, A. H., Li, S., & Zhou, X. (2021). Dynamic manipulation of pneumatically controlled soft finger for home automation. Measurement, 170, 108680.

    Article  Google Scholar 

  10. Wang, Z. K., Hirata, T., Sato, T., Mori, T., Kawakami, M., Furukawa, H., & Kawamura, S. (2021). A soft robotic hand based on bellows actuators for dishwashing automation. IEEE Robotics and Automation Letters, 6, 2139–2146.

    Article  Google Scholar 

  11. Jeong, J., Hyeon, K., Han, J., Park, C. H., Ahn, S. Y., Bok, S. K., & Kyung, K. U. (2022). Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle. IEEE-ASME Transactions on Mechatronics, 27, 1046–1058.

    Article  Google Scholar 

  12. Feng, M., Yang, D., & Gu, G. (2021). High-force fabric-based pneumatic actuators with asymmetric chambers and interference-reinforced structure for soft wearable assistive gloves. IEEE Robotics and Automation Letters, 6, 3105–3111.

    Article  Google Scholar 

  13. Dang, Y., Liu, Y., Hashem, R., Bhattacharya, D., Allen, J., Stommel, M., Cheng, L. K., & Xu, W. (2021). SoGut: A soft robotic gastric simulator. Soft Robotics, 8, 273–283.

    Article  Google Scholar 

  14. Tran, P., Jeong, S., Lyu, F., Herrin, K., Bhatia, S., Elliott, D., Kozin, S., & Desai, J. P. (2022). FLEXotendon glove-III: Voice-controlled soft robotic hand exoskeleton with novel fabrication method and admittance gras** control. IEEE-ASME Transactions on Mechatronics, 27, 3920–3931.

    Article  Google Scholar 

  15. Homberg, B. S., Katzschmann, R. K., Dogar, M. R., & Rus, D. (2019). Robust proprioceptive gras** with a soft robot hand. Autonomous Robots, 43, 681–696.

    Article  Google Scholar 

  16. Zhang, H. Y., Kumar, A. S., Chen, F. F., Fuh, J. Y. H., & Wang, M. Y. (2019). Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation and artificial hands. IEEE-ASME Transactions on Mechatronics, 24, 120–131.

    Article  Google Scholar 

  17. Ge, L., Chen, F. F., Wang, D., Zhang, Y. F., Han, D., Wang, T., & Gu, G. Y. (2020). Design, modeling, and evaluation of fabric-based pneumatic actuators for soft wearable assistive gloves. Soft Robotics, 7, 583–596.

    Article  Google Scholar 

  18. Yap, H. K., Kamaldin, N., Lim, J. H., Nasrallah, F. A., Goh, J. C. H., & Yeow, C. H. (2017). A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 782–793.

    Article  Google Scholar 

  19. Proietti, T., Neill, C. O., Hohimer, C. J., Nuckols, K., Clarke, M. E., Zhou, Y. M., Lin, D. J., & Walsh, C. J. (2021). Sensing and control of a multi-joint soft wearable robot for upper-limb assistance and rehabilitation. IEEE Robotics and Automation Letters, 6, 2381–2388.

    Article  Google Scholar 

  20. Li, S., Bai, H., Shepherd, R. F., & Zhao, H. C. (2019). Bioinspired design and additive manufacturing of soft materials, machines, robots, and haptic interfaces. Angewandte Chemie, 58, 11182–11204.

    Article  Google Scholar 

  21. Ang, B. W. K., & Yeow, C. H. (2019). Design and characterization of a 3D printed soft robotic wrist sleeve with 2 DoF for stroke rehabilitation. In IEEE international conference on soft robotics (RoboSoft) (pp. 14–18). Seoul, Korea, 2019

  22. Heung, K. H. L., Tang, Z. Q., Ho, L., Tung, M., Li, Z., & Tong, R. K. Y. (2019). Design of a 3D printed soft hand for stroke rehabilitation and daily activities assistance. In IEEE international conference on rehabilitation robotics (ICORR) (pp. 24–28). Toronto, Canada

  23. Tawk, C., Spinks, G. M., Panhuis, M., & Alici, G. (2019). 3D printable linear soft vacuum actuators: Their modeling, performance quantification and application in soft robotic systems. IEEE-ASME Transactions on Mechatronics, 24, 2118–2129.

    Article  Google Scholar 

  24. Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536, 451–455.

    Article  Google Scholar 

  25. Wallin, T. J., Pikul, J., & Shepherd, R. F. (2018). 3D printing of soft robotic systems. Nature Reviews Materials, 3, 84–100.

    Article  Google Scholar 

  26. Rus, D. L., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521, 467–475.

    Article  Google Scholar 

  27. Wang, Y. Y., Kokubu, S., Zhou, Z. C., Guo, X. Y., Hsueh, Y. H., & Yu, W. W. (2021). Designing soft pneumatic actuators for thumb movements. IEEE Robotics and Automation Letters, 6, 8450–8457.

    Article  Google Scholar 

  28. Jiralerspong, T., Heung, K. H. L., Tong, R. K.Y., & Li, Z (2018) A novel soft robotic glove for daily life assistance. In IEEE international conference on biomedical robotics and biomechatronics (Biorob) (pp. 671–676). Enschede, The Netherlands

  29. Yap, H. K., Hoon, J., Nasrallah, F., Goh, J. C. H., & Yeow, R. C. H. (2015) A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In IEEE international conference on robotics and automation (ICRA) (pp. 4967–4972). Washington State Convention Center Seattle, Washington

  30. Li, M., Wang, T. C., Zhuo, Y. Y., He, B., Tao, T. F., **e, J., & Xu, G. H. (2020). A soft robotic glove for hand rehabilitation training controlled by movements of the healthy hand. In International conference on ubiquitous robots (UR) (pp. 62–67). Kyoto, Japan

  31. Hu, D. B., Zhang, J. H., Yang, Y. H., Li, Q. Y., Li, D. H., & Hong, J. (2020) A novel soft robotic glove with positive-negative pneumatic actuator for hand rehabilitation. In IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 1840–1847). Boston, USA

  32. Wang, J. B., Fei, Y. Q., & Pang, W. (2019). Design, modeling, and testing of a soft pneumatic glove with segmented PneuNets bending actuators. IEEE-ASME Transactions on Mechatronics, 24, 990–1001.

    Article  Google Scholar 

  33. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M., & Walsh, C. J. (2013). Towards a soft pneumatic glove for hand rehabilitation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1512–1517). Tokyo, Japan

  34. Jiang, Y. K., Chen, D. S., Ma, J. L., Liu, Z., Luo, Y. Z., Li, J., & Li, Y. T. (2021). Multifunctional robotic glove with active-passive training modes for hand rehabilitation and assistance. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4969–4974). Prague, Czech Republic

  35. Hao, Y. F., Gong, Z. Y., **e, Z. X., Guan, S. Y., Yang, X. B., Wang, T. M., & Wen, L. (2018). A soft bionic gripper with variable effective length. Journal of Bionic Engineering, 15, 220–235.

    Article  Google Scholar 

  36. Fang, B., Sun, F., Wu, L. Y., Liu, F., Wang, X., Huang, H., Huang, W. B., Liu, H. P., & Wen, L. (2021). Multimode gras** soft gripper achieved by layer jamming structure and tendon-driven mechanism. Soft Robotics, 9, 233–249.

    Article  Google Scholar 

  37. Hao, Y. F., Biswas, S., Elliot, W. H., Wang, T. M., Zhu, M. J., Wen, L., & Visell, Y. (2020). A multimodal, envelo** soft gripper: Shape conformation, bioinspired adhesion, and expansion-driven suction. IEEE Transactions on Robotics, 37, 350–362.

    Article  Google Scholar 

  38. Zhang, X. B., Yan, J. H., & Zhao, J. (2022). A gas–ribbon-hybrid actuated soft finger with active variable stiffness. Soft Robotics, 9, 250–265.

    Article  Google Scholar 

  39. Zhong, G. L., Dou, W. Q., Zhang, X. C., & Yi, H. D. (2021). Bending analysis and contact force modeling of soft pneumatic actuators with pleated structures. International Journal of Mechanical Sciences, 193, 106150.

    Article  Google Scholar 

  40. Wang, Z. K., & Hirai, S. (2017). Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method. IEEE Robotics and Automation Letters, 2, 624–631.

    Article  Google Scholar 

  41. Zhong, G. L., Hou, Y. D., & Dou, W. Q. (2019). A soft pneumatic dexterous gripper with convertible gras** modes. International Journal of Mechanical Sciences, 153–154, 445–456.

    Article  Google Scholar 

  42. Wang, J. B., Min, J., Fei, Y. Q., & Pang, W. (2019). Study on nonlinear crawling locomotion of modular differential drive soft robot. Nonlinear Dynamics, 97, 1107–1123.

    Article  Google Scholar 

  43. Wang, X. J., Cheng, Y., Zheng, H. D., Li, Y. H., & Wang, C. D. (2021). Design and optimization of actuator for multijoint soft rehabilitation glove. Industrial Robot—The International Journal of Robotics Research and Application, 48, 877–890.

    Article  Google Scholar 

  44. GB/T 16252–1996. (1996). Hand sizing system—adult (pp. 1–13). The State Bureau of Quality and Technical Supervision.

    Google Scholar 

  45. Marechal, L., Balland, P., Lindenroth, L., Petrou, F., Kontovounisios, C., & Bello, F. (2021). Toward a common framework and database of materials for soft robotics. Soft Robotics, 8, 284–297.

    Article  Google Scholar 

  46. Fu, B. L. (2003). In the new reciprocal theorems of work in bending thin plates (pp. 130–175). Science Press.

    Google Scholar 

Download references

Funding

This work was supported by Scientific and technological breakthroughs in Henan Province (No. 222102220101), and (No. 212102210067), and National natural science foundation of China (Grant No. 52075500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Zheng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

This manuscript does not contain any studies with human participants or animals.

Consent to Participate

All the authors provided their consent.

Consent for Publication

All the authors have read and agreed to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Cheng, Y., Wang, X. et al. A Highly Adaptable Flexible Soft Glove Consisting of Multimode Deformable Soft Finger. J Bionic Eng 20, 1555–1568 (2023). https://doi.org/10.1007/s42235-023-00338-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00338-w

Keywords

Navigation