Log in

Evaluating the influence of road construction on landslide susceptibility in Saudi Arabia’s mountainous terrain: a Bayesian-optimised deep learning approach with attention mechanism and sensitivity analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the mountainous region of Asir region of Saudi Arabia, road construction activities are closely associated with frequent landslides, posing significant risks to both human life and infrastructural development. This highlights an urgent need for a highly accurate landslide susceptibility map to guide future development and risk mitigation strategies. Therefore, this study aims to (1) develop robust well-optimised deep learning (DL) models for predicting landslide susceptibility and (2) conduct a comprehensive sensitivity analysis to quantify the impact of each parameter influencing landslides. To achieve these aims, three advanced DL models—Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and Bayesian-optimised CNN with an attention mechanism—were rigorously trained and validated. Model validation included eight matrices, calibration curves, and Receiver Operating Characteristic (ROC) and Precision-Recall curves. Multicollinearity was examined using Variance Inflation Factor (VIF) to ensure variable independence. Additionally, sensitivity analysis was used to interpret the models and explore the influence of parameters on landslide. Results showed that road networks significantly influenced the areas identified as high-risk zones. Specifically, in the 1-km buffer around roadways, CNN_AM identified 10.42% of the area as ‘Very High’ susceptibility—more than double the 4.04% indicated by DNN. In the extended 2-km buffer zone around roadways, Bayesian CNN_AM continued to flag a larger area as Very High risk (7.46%), in contrast to DNN’s 3.07%. In performance metrics, CNN_AM outshined DNN and regular CNN models, achieving near-perfect scores in Area Under the Curve (AUC), precision-recall, and overall accuracy. Sensitivity analysis highlighted ‘Soil Texture’, ‘Geology’, ‘Distance to Road’, and ‘Slope’ as crucial for landslide prediction. This research offers a robust, high-accuracy model that emphasises the role of road networks in landslide susceptibility, thereby providing valuable insights for planners and policymakers to proactively mitigate landslide risks in vulnerable zones near existing and future road infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas F, Zhang F, Abbas F, Ismail M, Iqbal J, Hussain D, ... Albeshr, MF (2023). Landslide susceptibility map**: analysis of different feature selection techniques with artificial neural network tuned by Bayesian and metaheuristic algorithms. Remote Sensing 15(17):4330

  • Abdollahi M, Vahedifard F, Tracy FT (2023) Post-wildfire stability of unsaturated hillslopes against rainfall-triggered landslides. Earth’s Future 11(3):e2022EF003213

    Article  Google Scholar 

  • Abella EAC, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo. Cuba Geomorphology 94(3–4):453–466

    Article  Google Scholar 

  • Achu AL, Aju CD, Di Napoli M, Prakash P, Gopinath G, Shaji E, Chandra V (2023) Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geosci Front 14(6):101657

    Article  Google Scholar 

  • Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6:52138–52160

    Article  Google Scholar 

  • Ado M, Amitab K, Maji AK, Jasińska E, Gono R, Leonowicz Z, Jasiński M (2022) Landslide susceptibility map** using machine learning: a literature survey. Remote Sensing 14(13):3029

    Article  Google Scholar 

  • Ahmadlou M, Ebrahimian Ghajari Y, Karimi M (2022) Enhanced classification and regression tree (CART) by genetic algorithm (GA) and grid search (GS) for flood susceptibility map** and assessment. Geocarto Int 37(26):13638–13657

    Article  Google Scholar 

  • Ahmed IA, Talukdar S, Shahfahad, Parvez A, Rihan M, Baig MRI, Rahman A (2022) Flood susceptibility modeling in the urban watershed of Guwahati using improved metaheuristic-based ensemble machine learning algorithms. Geocarto Int 37:1–29

    Article  Google Scholar 

  • Aktürk G, Hauser SJ (2021) Detection of disaster-prone vernacular heritage sites at district scale: the case of Fındıklı in Rize, Turkey. Int J Disaster Risk Reduction 58:102238

    Article  Google Scholar 

  • Alqadhi S, Mallick J, Talukdar S, Bindajam AA, Saha TK, Ahmed M, Khan RA (2022a) Combining logistic regression-based hybrid optimized machine learning algorithms with sensitivity analysis to achieve robust landslide susceptibility map**. Geocarto Int 37(25):9518–9543

    Article  Google Scholar 

  • Alqadhi S, Mallick J, Talukdar S, Bindajam AA, Van Hong N, Saha TK (2022b) Selecting optimal conditioning parameters for landslide susceptibility: an experimental research on Aqabat Al-Sulbat, Saudi Arabia. Environ Sci Pollut Res 29:3743–3762

    Article  Google Scholar 

  • Alqadhi, S, Mallick J, Talukdar S, Ahmed M, Khan RA, Sarkar SK, Rahman A (2022c) Assessing the effect of future landslide on ecosystem services in Aqabat Al-Sulbat region, Saudi Arabia. Natural Hazards 113(1):641–671

  • Alqadhi S, Mallick J, Alkahtani M (2023) Integrated deep learning with explainable artificial intelligence for enhanced landslide management. Natural Hazards 1–23

  • Althuwaynee OF, Pradhan B (2017) Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomat Nat Haz Risk 8(2):706–732

    Article  Google Scholar 

  • Arabameri P, Rezaei L (2019) Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sens 11:999. https://doi.org/10.3390/rs11090999

    Article  Google Scholar 

  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Saha A, Blaschke T, Thi Ngo PT (2022) Decision tree based ensemble machine learning approaches for landslide susceptibility map**. Geocarto Int 37(16):4594–4627

    Article  Google Scholar 

  • Aryal J, Sitaula C, Frery AC (2023) Land use and land cover (LULC) performance modeling using machine learning algorithms: a case study of the city of Melbourne Australia. Sci Rep 13(1):13510

    Article  CAS  Google Scholar 

  • Aslam B, Zafar A, Khalil U (2023) Comparative analysis of multiple conventional neural networks for landslide susceptibility map**. Nat Hazards 115(1):673–707

    Article  Google Scholar 

  • Aslam B, Zafar A, Khalil U (2022) Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility map** of Northern part of Pakistan. Environ, Dev Sustain 1–28

  • Azarafza M, Azarafza M, Akgün H, Atkinson PM, Derakhshani R (2021) Deep learning-based landslide susceptibility map**. Sci Rep 11(1):24112

    Article  CAS  Google Scholar 

  • Beni T, Boldini D, Crosta GB, Frodella W, Gallego JI, Lusini E, Spizzichino D (2023) Rock instabilities at the archaeological site of Dadan (Kingdom of Saudi Arabia). Landslides 20:1–24

    Article  Google Scholar 

  • Benzenine F, Allal MA, Abdelbaki C, Kumar N, Goosen M, Gathenya JM (2023) Multi-hazard risk assessment and landslide susceptibility map**: a case study from Bensekrane in Algeria. Sustainability 15(3):2812

    Article  Google Scholar 

  • Bhat IA, Ahmed R, Bhat WA, Ahmed P (2023) Application of AHP based geospatial modeling for assessment of landslide hazard zonation along Mughal road in the Pir Panjal Himalayas. Environ Earth Sci 82(13):336

    Article  Google Scholar 

  • Bien TX, Iqbal M, Jamal A, Nguyen DD, Van Phong T, Costache R, Pham BT (2023) Integration of rotation forest and multiboost ensemble methods with forest by penalizing attributes for spatial prediction of landslide susceptible areas. Stochastic Environ Res Risk Assess 37:1–20

    Article  Google Scholar 

  • Buhrmester V, Münch D, Arens M (2021) Analysis of explainers of black box deep neural networks for computer vision: a survey. Machine Learning Knowl Extraction 3(4):966–989

    Article  Google Scholar 

  • Cao Y, Wei X, Fan W, Nan Y, **ong W, Zhang S (2021) Landslide susceptibility assessment using the Weight of Evidence method: a case study in Xunyang area. China Plos One 16(1):e0245668

    Article  CAS  Google Scholar 

  • Casas Rius JR, Chacón Flores RA, Stipanovic I, Škaric Palic S, Ramonell Cazador C (2022). D5. 1 SHM digital twin requirements for residential, industrial buildings and bridges

  • Cemiloglu A, Zhu L, Mohammednour AB, Azarafza M, Nanehkaran YA (2023) Landslide susceptibility assessment for Maragheh County, Iran, using the logistic regression algorithm. Land 12(7):1397

    Article  Google Scholar 

  • Chen X, Chen W (2021) GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA 196:104833

    Article  Google Scholar 

  • Chen C, Fan L (2022) CNN-LSTM-attention deep learning model for map** landslide susceptibility in Kerala, India. ISPRS Ann Photogramm, Remote Sens Spatial Inf Sci 10:25–30

    Article  CAS  Google Scholar 

  • Chen Z, Song D (2023) Modeling landslide susceptibility based on convolutional neural network coupling with metaheuristic optimization algorithms. Int J Digital Earth 16(1):3384–3416

    Article  Google Scholar 

  • Chen W, Yang Z (2023) Landslide susceptibility modeling using bivariate statistical-based logistic regression, naïve Bayes, and alternating decision tree models. Bull Eng Geol Env 82(5):190

    Article  Google Scholar 

  • Chen W, **e X, Wang J, Pradhan B, Hong H, Bui DT, Ma J (2017) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 151:147–160

    Article  Google Scholar 

  • Chen L, Guo Z, Yin K, Shrestha DP, ** S (2019) The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan’en County (Hubei, China). Nat Hazard 19(10):2207–2228

    Article  Google Scholar 

  • Chen Z, Huang Y, He, X, Shao, X, Li, L, Xu, C, ...  **ao Z (2023) Landslides triggered by the 10 June 2022 Maerkang earthquake swarm, Sichuan, China: spatial distribution and tectonic significance. Landslides 1–15

  • Cigna F, Bateson LB, Jordan CJ, Dashwood C (2014) Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens Environ 152:441–466

    Article  Google Scholar 

  • Curry AM (2023) Talus slopes. Reference Module in Earth Systems and Environmental Sciences

    Book  Google Scholar 

  • Dahim M, Alqadhi S, Mallick J (2023) Enhancing landslide management with hyper-tuned machine learning and deep learning models: predicting susceptibility and analyzing sensitivity and uncertainty. Front Ecol Evol 11:1108924

    Article  Google Scholar 

  • Das S, Sarkar S, Kanungo DP (2023) A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Nat Hazards 115(1):23–72

    Article  Google Scholar 

  • Daviran M, Shamekhi M, Ghezelbash R, Maghsoudi A (2023) Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm. Int J Environ Sci Technol 20(1):259–276

    Article  CAS  Google Scholar 

  • Deng Y, Zuo X, Li Y, Zhou X (2023) Landslide susceptibility evaluation of Bayesian optimized CNN Gengma seismic zone considering InSAR deformation. Appl Sci 13(20):11388

    Article  CAS  Google Scholar 

  • Diara IW, Suyarto R, Saifulloh M (2022) Spatial distribution of landslide susceptibility in new road construction Mengwitani-Singaraja, Bali-Indonesia: based on geospatial data. Geomate Journal 23(96):95–103

    Google Scholar 

  • Dikshit A, Satyam N, Pradhan B (2019) Estimation of rainfall-induced landslides using the TRIGRS model. Earth Systems and Environment 3:575–584

    Article  Google Scholar 

  • Dikshit A, Pradhan B, Santosh M (2022) Artificial neural networks in drought prediction in the 21st century—a scientometric analysis. Appl Soft Comput 114:108080

    Article  Google Scholar 

  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Yamagishi H (2020) Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Total Environ 720:137320

    Article  CAS  Google Scholar 

  • Emeh C, Igwe O (2017) Variations in soils derived from an erodible sandstone formation and factors controlling their susceptibility to erosion and landslide. J Geol Soc India 90:362–370

    Article  Google Scholar 

  • Gahman L, Thongs G (2020) Development justice, a proposal: reckoning with disaster, catastrophe, and climate change in the Caribbean. Trans Inst Br Geogr 45(4):763–778

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252

    Article  Google Scholar 

  • Gariano SL, Rianna G, Petrucci O, Guzzetti F (2017) Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci Total Environ 596:417–426

    Article  Google Scholar 

  • Ghasemain B, Asl DT, Pham BT, Avand M, Nguyen HD, Janizadeh SJVJOES (2020) Shallow landslide susceptibility map**: a comparison between classification and regression tree and reduced error pruning tree algorithms. Vietnam J Earth Sci 42(3):208–227

    Google Scholar 

  • Guo Z, Ferrer JV, Hürlimann M, Medina V, Puig-Polo C, Yin K, Huang D (2023) Shallow landslide susceptibility assessment under future climate and land cover changes: a case study from southwest China. Geosci Front 14(4):101542

    Article  Google Scholar 

  • Haghani M, Sarvi M (2023) Crowd model calibration at strategic, tactical, and operational levels: full-spectrum sensitivity analyses show bottleneck parameters are most critical, followed by exit-choice-changing parameters. Transp Lett 1–28

  • Hakim WL, Rezaie F, Nur AS, Panahi M, Khosravi K, Lee CW, Lee S (2022) Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility map** in Icheon, South Korea. J Environ Manage 305:114367

    Article  Google Scholar 

  • Han S, Liu B, Fan X, Feng T, Yang J, Zhou Z, Luo J (2023) A new approach for landslide susceptibility assessments based on KDE-MDBN: a case study from mountainous regions impacted by the Wenchuan earthquake China. Environ Model Software 167:105759

    Article  Google Scholar 

  • Hasanpour Zaryabi E, Moradi L, Kalantar B, Ueda N, Halin AA (2022) Unboxing the black box of attention mechanisms in remote sensing big data using XAI. Remote Sensing 14(24):6254

    Article  Google Scholar 

  • Hong H, Liu J, Zhu AX (2020) Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci Total Environ 718:137231

    Article  CAS  Google Scholar 

  • Hua Y, Wang X, Li Y, Xu P, **a W (2021) Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides 18:281–302

    Article  Google Scholar 

  • Huang Y, Zhao L (2018) Review on landslide susceptibility map** using support vector machines. CATENA 165:520–529

    Article  Google Scholar 

  • Jaafari A, Panahi M, Mafi-Gholami D, Rahmati O, Shahabi H, Shirzadi A, Pradhan B (2022) Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Appl Soft Comput 116:108254

    Article  Google Scholar 

  • Ji S, Yu D, Shen C, Li W, Xu Q (2020) Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 17:1337–1352

    Article  Google Scholar 

  • Johansen BE (2023a) Climate crisis: code red for humanity and our home planet: a scorecard for an apocalypse. Global Warming and the Climate Crisis: Science, Spirit, and Solutions. Springer International Publishing, Cham, pp 97–197

    Chapter  Google Scholar 

  • Johansen BE (2023b) Science: why so urgent? Saving ourselves from ourselves. Global Warming and the Climate Crisis: Science, Spirit, and Solutions. Springer International Publishing, Cham, pp 17–96

    Chapter  Google Scholar 

  • Kabeta WF, Tamiru M, Tsige D, Ware H (2023) An integrated geotechnical and geophysical investigation of landslide in Chira town Ethiopia. Heliyon 9(7):e17620

    Article  Google Scholar 

  • Kadlíček T, Janda T, Šejnoha M, Mašín D, Najser J, Beneš Š (2022) Automated calibration of advanced soil constitutive models. Part I: hypoplastic sand. Acta Geotechnica, 1–18

  • Kahal AY, Abdelrahman K, Alfaifi HJ, Yahya MM (2021) Landslide hazard assessment of the Neom promising city, northwestern Saudi Arabia: an integrated approach. J King Saud Univ-Sci 33(2):101279

    Article  Google Scholar 

  • Kavzoglu T, Teke A (2022) Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost). Bull Eng Geol Env 81(5):201

    Article  Google Scholar 

  • Kelman I (2020) Disaster by choice: how our actions turn natural hazards into catastrophes. Oxford University Press

    Google Scholar 

  • Khan A, Gupta S, Gupta SK (2020) Multi-hazard disaster studies: monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. Int J Disaster Risk Reduction 47:101642

    Article  Google Scholar 

  • Kikuchi T, Sakita K, Nishiyama S, Takahashi K (2023) Landslide susceptibility map** using automatically constructed CNN architectures with pre-slide topographic DEM of deep-seated catastrophic landslides caused by Typhoon Talas. Nat Hazards 117(1):339–364

    Article  Google Scholar 

  • Kim JC, Lee S, Jung HS, Lee S (2018) Landslide susceptibility map** using random forest and boosted tree models in Pyeong-Chang. Korea Geocarto International 33(9):1000–1015

    Article  Google Scholar 

  • Koch M, Mather PM (1997) Lineament map** for groundwater resource assessment: a comparison of digital Synthetic Aperture Radar (SAR) imagery and stereoscopic Large Format Camera (LFC) photographs in the Red Sea Hills Sudan. Int J Remote Sens 18(7):1465–1482

    Article  Google Scholar 

  • Kohno M, Higuchi Y (2023) Landslide susceptibility assessment in the Japanese archipelago based on a landslide distribution map. ISPRS Int J Geo Inf 12(2):37

    Article  Google Scholar 

  • Korup O, Stolle A (2014) Landslide prediction from machine learning. Geol Today 30(1):26–33

    Article  Google Scholar 

  • Kumar C, Walton G, Santi P, Luza C (2023) An ensemble approach of feature selection and machine learning models for regional landslide susceptibility map** in the arid mountainous terrain of Southern Peru. Remote Sensing 15(5):1376

    Article  Google Scholar 

  • Lee S, Baek WK, Jung HS, Lee S (2020) Susceptibility map** on urban landslides using deep learning approaches in Mt Umyeon. Appl Sci 10(22):8189

    Article  CAS  Google Scholar 

  • Li Y, Wang X, Mao H (2020) Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat Hazards 104:2115–2151

    Article  Google Scholar 

  • Lin M, Teng S, Chen G, Hu B (2023) Application of convolutional neural networks based on Bayesian optimization to landslide susceptibility map** of transmission tower foundation. Bull Eng Geol Env 82(2):51

    Article  Google Scholar 

  • Liu S, Wang L, Zhang W, He Y, Pijush S (2023) A comprehensive review of machine learning-based methods in landslide susceptibility map**. Geological Journal 58:2283

    Article  Google Scholar 

  • Liu S, Wang L, Zhang W, He Y, Pijush S (2023b) A comprehensive review of machine learning‐based methods in landslide susceptibility map**. Geological Journal

  • Lizama E, Morales B, Somos-Valenzuela M, Chen N, Liu M (2022) Understanding landslide susceptibility in Northern Chilean Patagonia: a basin-scale study using machine learning and field data. Remote Sensing 14(4):907

    Article  Google Scholar 

  • Mallick J, Singh RK, AlAwadh MA, Islam S, Khan RA, Qureshi MN (2018) GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Aqabat Al-Sulbat Watershed, Saudi Arabia. Environ Earth Sci 77:1–25

    Article  Google Scholar 

  • Mallick J, Alqadhi S, Talukdar S, Sarkar SK, Roy SK, Ahmed M (2022a) Modelling and map** of landslide susceptibility regulating potential ecosystem service loss: an experimental research in Saudi Arabia. Geocarto Int 37(25):10170–10198

    Article  Google Scholar 

  • Mallick J, Naikoo MW, Talukdar S, Ahmed IA, Rahman A, Islam ARMT, Shashtri S (2022) Develo** groundwater potentiality models by coupling ensemble machine learning algorithms and statistical techniques for sustainable groundwater management. Geocarto Int 37(25):7927–7953

    Article  Google Scholar 

  • Matougui Z, Djerbal L, Bahar R (2023) A comparative study of heterogeneous and homogeneous ensemble approaches for landslide susceptibility assessment in the Djebahia region, Algeria. Environ Sci Pollut Res 1–27

  • Matti S, Ögmundardóttir H (2021) Local knowledge of emerging hazards: instability above an Icelandic glacier. Int J Disaster Risk Reduction 58:102187

    Article  Google Scholar 

  • Meena SR, Puliero S, Bhuyan K, Floris M, Catani F (2022) Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy). Nat Hazard 22(4):1395–1417

    Article  Google Scholar 

  • Min DH, Yoon HK (2021) Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility map**. Sci Rep 11(1):6594

    Article  CAS  Google Scholar 

  • Le Minh N, Truyen PT, Van Phong T, Jaafari A, Amiri M, Van Duong N, ... Pham BT (2023) Ensemble models based on radial basis function network for landslide susceptibility map**. Environ Sci Pollut Res 1–19

  • Mondal K, Bandyopadhyay S, Karmakar S (2023) Framework for global sensitivity analysis in a complex 1D–2D coupled hydrodynamic model: highlighting its importance on flood management over large data-scarce regions. J Environ Manage 332:117312

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Nachappa TG, Piralilou ST, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T (2020) Flood susceptibility map** with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol 590:125275

    Article  Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1–2):11–20

    Article  Google Scholar 

  • Nishioka M, Inoue H, Ota T, Mizoue N (2023) Impact of forest type and age on shallow landslide susceptibility: a case study from the 2017 heavy rainfall in northern Kyushu, Japan. J Forest Res 28:1–8

    Article  Google Scholar 

  • Nurwatik N, Ummah MH, Cahyono AB, Darminto MR, Hong JH (2022) A comparison study of landslide susceptibility spatial modeling using machine learning. ISPRS Int J Geo Inf 11(12):602

    Article  Google Scholar 

  • Nwazelibe VE, Egbueri JC, Unigwe CO, Agbasi JC, Ayejoto DA, Abba SI (2023) GIS-based landslide susceptibility map** of Western Rwanda: an integrated artificial neural network, frequency ratio, and Shannon entropy approach. Environ Earth Sci 82(19):439

    Article  Google Scholar 

  • Othman AA, Gloaguen R, Andreani L, Rahnama M (2018) Improving landslide susceptibility map** using morphometric features in the Mawat area, Kurdistan Region, NE Iraq: comparison of different statistical models. Geomorphology 319:147–160

    Article  Google Scholar 

  • Pandey A, Shekhar Sarkar M, Palni S, Parashar D, Singh G, Kaushik S, Abdo HG (2023a) Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya. Geom, Nat Hazards and Risk 14(1):2227324

    Article  Google Scholar 

  • Pandey A, Shekhar Sarkar M, Palni S, Parashar D, Singh G, Kaushik S, Abdo HG (2023b) Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya. Geomatics, Natural Hazards and Risk 14(1):2227324

    Article  Google Scholar 

  • Park S, Kim J (2019) Landslide susceptibility map** based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci 9(5):942

    Article  Google Scholar 

  • Pei Y, Qiu H, Yang D, Liu Z, Ma S, Li J, Wufuer W (2023a) Increasing landslide activity in the Taxkorgan River Basin (eastern Pamirs Plateau, China) driven by climate change. Catena 223:106911

    Article  Google Scholar 

  • Pei Y, Qiu H, Zhu Y, Wang J, Yang D, Tang B, Cao M (2023b) Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides 20:1–19

    Article  Google Scholar 

  • Pei Y, Qiu H, Zhu Y, Wang J, Yang D, Tang B, Cao M (2023c) Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides 20:1–19

    Article  Google Scholar 

  • Polykretis C, Chalkias C (2018) Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models. Nat Hazards 93:249–274

    Article  Google Scholar 

  • Pradhan B (2010) Landslide susceptibility map** of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38:301–320

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2020) Rainfall-induced shallow landslide susceptibility map** at two adjacent catchments using advanced machine learning algorithms. ISPRS Int J Geo Inf 9(10):569

    Article  Google Scholar 

  • Pradhan B, Dikshit A, Lee S, Kim H (2023) An explainable AI (XAI) model for landslide susceptibility modeling. Appl Soft Comput 142:110324

    Article  Google Scholar 

  • Qiu H, Zhu Y, Zhou W, Sun H, He J, Liu Z (2022) Influence of DEM resolution on landslide simulation performance based on the Scoops3D model. Geomat Nat Haz Risk 13(1):1663–1681

    Article  Google Scholar 

  • Rahmati O, Kornejady A, Samadi M, Deo RC, Conoscenti C, Lombardo L, Bui DT (2019) PMT: new analytical framework for automated evaluation of geo-environmental modelling approaches. Sci Total Environ 664:296–311

    Article  CAS  Google Scholar 

  • Rehman S, Azhoni A (2023) Analyzing landslide susceptibility, health vulnerability and risk using multi-criteria decision-making analysis in Arunachal Pradesh India. Acta Geophysica 71(1):101–128

    Article  Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, PrAqabat Al-Sulbatt F (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566(7743):195–204

    Article  CAS  Google Scholar 

  • Renza D, Cárdenas EA, Martinez E, Weber SS (2022) CNN-based model for landslide susceptibility assessment from multispectral data. Appl Sci 12(17):8483

    Article  CAS  Google Scholar 

  • Rihan M, Bindajam AA, Talukdar S, Naikoo MW, Mallick J, Rahman A (2023) Forest fire susceptibility map** with sensitivity and uncertainty analysis using machine learning and deep learning algorithms. Adv Space Res. https://doi.org/10.1016/j.asr.2023.03.026

    Article  Google Scholar 

  • Román Herrera JC, Garrido Manrique J (2023) Evaluation of road network slopes susceptibility to seismically-induced landslides in the Granada Basin (S Spain)

  • Rong G, Alu S, Li K, Su Y, Zhang J, Zhang Y, Li T (2020) Rainfall induced landslide susceptibility map** based on Bayesian optimized random forest and gradient boosting decision tree models—a case study of Shuicheng County. China Water 12(11):3066

    Article  Google Scholar 

  • Rong G, Li K, Su Y, Tong Z, Liu X, Zhang J, Li T (2021) Comparison of tree-structured Parzen estimator optimization in three typical neural network models for landslide susceptibility assessment. Remote Sensing 13(22):4694

    Article  Google Scholar 

  • Różycka M, Migoń P, Michniewicz A (2017) Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Zeitschrift Für Geomorphologie, Supplementary Issues 61(2):61–80

    Article  Google Scholar 

  • Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1(5):206–215

    Article  Google Scholar 

  • Saha S, Saha A, Hembram TK, Mandal K, Sarkar R, Bhardwaj D (2022) Prediction of spatial landslide susceptibility applying the novel ensembles of CNN, GLM and random forest in the Indian Himalayan region. Stoch Env Res Risk Assess 36(10):3597–3616

    Article  Google Scholar 

  • Sameen MI, Pradhan B, Lee S (2020) Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. CATENA 186:104249

    Article  Google Scholar 

  • Sangeeta, Singh SK (2023) Influence of anthropogenic activities on landslide susceptibility: a case study in Solan district, Himachal Pradesh India. J Mt Sci 20(2):429–447

    Article  Google Scholar 

  • Santi PM, Hewitt K, VanDine DF, Barillas Cruz E (2011) Debris-flow impact, vulnerability, and response. Nat Hazards 56:371–402

    Article  Google Scholar 

  • Sharma A, Prakash C (2023) Impact assessment of road construction on landslide susceptibility in mountainous region using GIS-based statistical modelling. J Geol Soc India 99(8):1131–1140

    Article  Google Scholar 

  • Shinohara Y, Watanabe Y (2023) Differences in factors determining landslide hazards among three types of landslides in Japan. Nat Hazards 118:1–17

    Article  Google Scholar 

  • Singh A, Pal S, Kanungo DP (2021) An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India. Environ Dev Sustain 23(4):5058–5095

    Article  Google Scholar 

  • Singh A, Ashuli A, Dhiman N, Dubey CS, Shukla DP (2023) Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach. Environ Sci Pollut Res 1–18

  • Song X, Zhang J, Zhan C, Xuan Y, Ye M, Xu C (2015) Global sensitivity analysis in hydrological modeling: review of concepts, methods, theoretical framework, and applications. J Hydrol 523:739–757

    Article  Google Scholar 

  • Spiegel SJ, Kachena L, Gudhlanga J (2023) Climate disasters, altered migration and pandemic shocks: (im) mobilities and interrelated struggles in a border region. Mobilities 18(2):328–347

    Article  Google Scholar 

  • Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, Nelson M (2006) Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43(6):1317–1325

    Article  CAS  Google Scholar 

  • Sun D, Wen H, Wang D, Xu J (2020) A random forest model of landslide susceptibility map** based on hyperparameter optimization using Bayes algorithm. Geomorphology 362:107201

    Article  Google Scholar 

  • Sun D, Gu Q, Wen H, Xu J, Zhang Y, Shi S, ... Zhou X (2022) Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and map** units by hybrid factors screening and sample optimization. Gondwana Research

  • Sun D, Ding Y, Wen H, Zhang F (2023) A novel QLattice‐based whitening machine learning model of landslide susceptibility map**. Earth Surface Processes and Landforms

  • Sur U, Singh P, Rai PK, Thakur JK (2021) Landslide probability map** by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand, India. Environ Dev Sustain 23:13526–13554

    Article  Google Scholar 

  • Talukdar S, Mallick J, Sarkar SK, Roy SK, Islam ARMT, Praveen B, Sobnam M (2022) Novel hybrid models to enhance the efficiency of groundwater potentiality model. Appl Water Sci 12(4):62

    Article  Google Scholar 

  • Tian W (2013) A review of sensitivity analysis methods in building energy analysis. Renew Sustain Energy Rev 20:411–419

    Article  Google Scholar 

  • Tiwari SK, Kumaraswamidhas LA, Prince Kamal M, Rehman MU (2023) A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance. Environ Sci Pollut Res 30(17):49666–49684

    Article  Google Scholar 

  • Ummah MH, Darminto MR (2023) Landslide susceptibility spatial modelling using random forest algorithm: a case study of Malang Regency. In: IOP Conference Series: Earth and Environmental Science 1127(1): 012026. IOP Publishing

  • Vaidya RA, Shrestha MS, Nasab N, Gurung DR, Kozo N, Pradhan NS, Wasson RJ (2019) Disaster risk reduction and building resilience in the Hindu Kush Himalaya. The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people, 389–419

  • Van Dao D, Jaafari A, Bayat M, Mafi-Gholami D, Qi C, Moayedi H, Pham BT (2020) A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena 188:104451

    Article  Google Scholar 

  • Vega J, Hidalgo C (2023) Comparison study of a landslide-event hazard map** using a multi-approach of fuzzy logic, TRIGRS model, and support vector machine in a data-scarce Andes Mountain region. Arab J Geosci 16(9):527

    Article  Google Scholar 

  • Verachtert E, Van Den Eeckhaut M, Poesen J, Deckers J (2013) Spatial interaction between collapsed pipes and landslides in hilly regions with loess-derived soils. Earth Surf Proc Land 38(8):826–835

    Article  Google Scholar 

  • Wang Y, Fang Z, Hong H (2019) Comparison of convolutional neural networks for landslide susceptibility map** in Yanshan County, China. Sci Total Environ 666:975–993

    Article  CAS  Google Scholar 

  • Wang Y, Fang Z, Wang M, Peng L, Hong H (2020) Comparative study of landslide susceptibility map** with different recurrent neural networks. Comput Geosci 138:104445

    Article  Google Scholar 

  • Wang Y, Fang Z, Hong H, Costache R, Tang X (2021) Flood susceptibility map** by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree. J Environ Manage 289:112449

    Article  Google Scholar 

  • Wang H, Wang L, Zhang L (2022) Transfer learning improves landslide susceptibility assessment. Gondwana Research

    Google Scholar 

  • Woldesenbet TT, Telila TG, Feyessa FF (2023) Geotechnical and geological investigation of landslide in West Arsi Zone Ethiopia. Environ Earth Sci 82(18):1–17

    Article  Google Scholar 

  • Wu J, Zhang Y, Yang L, Zhang Y, Lei J, Zhi M, Ma G (2023a) Identifying the essential influencing factors of landslide susceptibility models based on hybrid-optimized machine learning with different grid resolutions: a case of Sino-Pakistani Karakorum Highway. Environ Sci Pollut Res 30:1–26

    CAS  Google Scholar 

  • Wu X, Song Y, Chen W, Kang G, Qu R, Wang Z, Chen H (2023b) Analysis of geological hazard susceptibility of landslides in Muli County based on random forest algorithm. Sustainability 15(5):4328

    Article  Google Scholar 

  • ** using deep learning, support vector machine, and logistic regression. Bull Eng Geol Env 81(5):174

    Article  Google Scholar 

  • **ao X, Yu Z, Wang J, Zhou Y, Liu K, Liu Z, Zhang C (2023) Hydrochemistry of surface waters in a permafrost headwater catchment in the Northeastern Tibetan Plateau. J Hydrol 617:128878

    Article  CAS  Google Scholar 

  • ** City China. Nat Hazards 109(1):931–948

    Article  Google Scholar 

  • Yang B, Wang S, Zhou Y, Wang F, Hu Q, Chang Y, Zhao Q (2020) Extraction of road blockage information for the Jiuzhaigou earthquake based on a convolution neural network and very-high-resolution satellite images. Earth Sci Inf 13:115–127

    Article  Google Scholar 

  • Yang Z, Xu C, Shao X, Ma S, Li L (2022) Landslide susceptibility map** based on CNN-3D algorithm with attention module embedded. Bull Eng Geol Env 81(10):412

    Article  Google Scholar 

  • Yao J, Qin S, Qiao S, Liu X, Zhang L, Chen J (2022) Application of a two-step sampling strategy based on deep neural network for landslide susceptibility map**. Bull Eng Geol Env 81(4):148

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR (2021) Landslide susceptibility map** using machine learning algorithms and comparison of their performance at Aqabat Al-Sulbat Basin, Asir Region Saudi Arabia. Geosci Front 12(2):639–655

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Dikshit A, Al-Katheri MM, Matar SS, Mahdi AM (2022) Landslide susceptibility map** using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bull Eng Geol Env 81(4):165

    Article  Google Scholar 

  • Yu X, Zhang K, Song Y, Jiang W, Zhou J (2021) Study on landslide susceptibility map** based on rock–soil characteristic factors. Sci Rep 11(1):15476

    Article  CAS  Google Scholar 

  • Yunus AP, Fan X, Subramanian SS, Jie D, Xu Q (2021) Unraveling the drivers of intensified landslide regimes in Western Ghats India. Sci Total Environ 770:145357

    Article  CAS  Google Scholar 

  • Zeng T, Guo Z, Wang L, ** B, Wu F, Guo R (2023a) Tempo-spatial landslide susceptibility assessment from the perspective of human engineering activity. Remote Sensing 15(16):4111

    Article  Google Scholar 

  • Zeng T, Wu L, Peduto D, Glade T, Hayakawa YS, Yin K (2023b) Ensemble learning framework for landslide susceptibility map**: different basic classifier and ensemble strategy. Geosci Front 14:101645

    Article  Google Scholar 

  • Zhang G, Wang M, Liu K (2019) Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. Int J Disaster Risk Sci 10(3):386–403

    Article  CAS  Google Scholar 

  • Zhang Y, Wen H, **e P, Hu D, Zhang J, Zhang W (2021) Hybrid-optimized logistic regression model of landslide susceptibility along mountain highway. Bull Eng Geol Env 80(10):7385–7401

    Article  Google Scholar 

  • Zhang J, Ma X, Zhang J, Sun D, Zhou X, Mi C, Wen H (2023a) Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage 332:117357

    Article  Google Scholar 

  • Zhang Y, Ayyub BM, Gong W, Tang H (2023b) Risk assessment of roadway networks exposed to landslides in mountainous regions—a case study in Fengjie County, China. Landslides 20:1–13

    Article  CAS  Google Scholar 

  • Zhao XY, Zhao MQ, Wang PP, Dai YQ, Pu WQ, Huang CM (2023) Influence of surface roughness on the development of moss-dominated biocrusts on mountainous rock-cut slopes in West Sichuan China. J Mt Sci 20(8):2181–2196

    Article  Google Scholar 

  • Zhou W, Qiu H, Wang L, Pei Y, Tang B, Ma S, Cao M (2022) Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction. Catena 213:106199

    Article  Google Scholar 

  • Zhou J, Tan S, Li J, Xu J, Wang C, Ye H (2023a) Landslide susceptibility assessment using the analytic hierarchy process (AHP): a case study of a construction site for photovoltaic power generation in Yunxian County Southwest China. Sustainability 15(6):5281

    Article  Google Scholar 

  • Zhou J, Tan S, Li J, Xu J, Wang C, Ye H (2023b) Landslide susceptibility assessment using the analytic hierarchy process (AHP): a case study of a construction site for photovoltaic power generation in Yunxian County Southwest China. Sustainability 15(6):528

    Article  Google Scholar 

  • Zhou M, Yuan M, Yang G, Mei G (2023c). Risk analysis of road networks under the influence of landslides by considering landslide susceptibility and road vulnerability: a case study. Nat Hazards Res

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group under grant number R.G.P.2/442/44. Authors also thankful to the undergraduate students of College of Engineering, King Khalid University for assisting in data collections.

Funding

Funding for this research was given under award number RGP2/442/44 by the Deanship of Scientific Research, King Khalid University, Ministry of Education, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, Saeed Alqadhi, Javed Mallick, Hoang Thi Hang, and Abdullah Faiz Saeed Al Asmari; data curation and formal analysis, Javed Mallick, Saeed Alqadhi, Hoang Thi Hang, and Abdullah Faiz Saeed Al Asmari; funding acquisition, Saeed Alqadhi; methodology, Javed Mallick, Hoang Thi Hang, Abdullah Faiz Saeed Al Asmari, and Rina Kumari; project administration, Saeed Alqadhi and Javed Mallick; resources, Hoang Thi Hang, Abdullah Faiz Saeed Al Asmari, and Rina Kumari; software, Javed Mallick; supervision, Javed Mallick and Rina Kumari; validation: Saeed Alqadhi and Javed Mallick; writing — original draft, Saeed Alqadhi and Javed Mallick Swapan Talukdar; writing — review and editing, Hoang Thi Hang, Abdullah Faiz Saeed Al Asmari, and Rina Kumari.

Corresponding author

Correspondence to Javed Mallick.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 842 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqadhi, S., Mallick, J., Hang, H.T. et al. Evaluating the influence of road construction on landslide susceptibility in Saudi Arabia’s mountainous terrain: a Bayesian-optimised deep learning approach with attention mechanism and sensitivity analysis. Environ Sci Pollut Res 31, 3169–3194 (2024). https://doi.org/10.1007/s11356-023-31352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-31352-4

Keywords

Navigation