Log in

Dimethoate residues in Pakistan and mitigation strategies through microbial degradation: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organophosphate pesticides (OPs) are used extensively for crop protection worldwide due to their high water solubility and relatively low persistence in the environment compared to other pesticides, such as organochlorines. Dimethoate is a broad-spectrum insecticide that belongs to the thio-organophosphate group of OPs. It is applied to cash crops, animal farms, and houses. It has been used in Pakistan since the 1960s, either alone or in a mixture with other OPs or pyrethroids. However, the uncontrolled use of this pesticide has resulted in residual accumulation in water, soil, and tissues of plants via the food chain, causing toxic effects. This review article has compiled and analyzed data reported in the literature between 1998 and 2021 regarding dimethoate residues and their microbial bioremediation. Different microorganisms such as bacteria, fungi, and algae have shown potential for bioremediation. However, an extensive role of bacteria has been observed compared to other microorganisms. Twenty bacterial, three fungal, and one algal genus with potential for the remediation of dimethoate have been assessed. Active bacterial biodegraders belong to four classes (i) alpha-proteobacteria, (ii) gamma-proteobacteria, (iii) beta-proteobacteria, and (iv) actinobacteria and flavobacteria. Microorganisms, especially bacterial species, are a sustainable technology for dimethoate bioremediation from environmental samples. Yet, new microbial species or consortia should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from Khan et al. (2020)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

adapted from Li et al. 2010)

Similar content being viewed by others

Data availability

All data are available in the manuscript in the form of tables.

References

  • Abdel-Megeed A, El-Nakieb FA (2008) Bioremediation of dimethoate by effective microorganisms in water. Terr Aquat Environ Toxicol 2:1–4

    Google Scholar 

  • Acero JL, Benitez FJ, Real FJ, González M (2008) Chlorination of organophosphorus pesticides in natural waters. J Hazard Mater 153:320–328

    Article  CAS  Google Scholar 

  • Ahad K, Anwar T, Ahmad I, Mohammad A, Tahir S, Aziz S, Baloch UK (2000) Determination of insecticide residues in groundwater of Mardan Division, NWFP, Pakistan: A case study. Water SA-Pretoria 26:409–412

    CAS  Google Scholar 

  • Ahad K, Hayat Y, Ahmad I, Soomro MH (2001) Capillary chromatographic determination of pesticides residues in groundwater of Multan Division. Nucleus 38:145–149

    Google Scholar 

  • Ahmad S, Chaudhary HJ, Damalas CA (2021) Microbial detoxification of dimethoate through mediated hydrolysis by Brucella sp. PS4: molecular profiling and plant growth-promoting traits. Environ Sci Pollut Res 9:1–2

    Google Scholar 

  • Ai T, Wang H, Wen XF, Zhang SQ, Huang JS (2006) Screening, identification and characterization of a dimethoate degrading fungus. J Agro-Environ Sci 25:1250–1254

    CAS  Google Scholar 

  • Ajiboye TO, Oladoye PO, Olanrewaju CA, Akinsola GO (2022) Organophosphorus pesticides: impacts, detection and removal strategies. Environ Nanotechnol Monit Manage 17:100655

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Ali MA (2018) Handbook on pesticides standardized in the Punjab for agriculture extension workers: the pesticides registered with recommendations for safe handling and use in Pakistan. Plant Sciences Division, Pakistan Agriculture Research Council, Islamabad, Pakistan

  • Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6:987–998

    CAS  Google Scholar 

  • Ambreen S, Yasmin A, Aziz S (2020) Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon 6:e04221

    Article  Google Scholar 

  • Anwar T, Ahmad I, Tahir S (2011) Determination of pesticide residues in fruits of Nawabshah district, Sindh, Pakistan. Pak J Bot 43:1133–1139

    CAS  Google Scholar 

  • Anwar T, Ahmad I, Tahir S (2013) Reporting pesticide residues in soil of Lodhran district, Punjab, Pakistan. Int J Biol Res 1:143–147

    Google Scholar 

  • Anwar T, Ahmad I, Tahir S (2014) Gas chromatographic analysis of pesticide residues in soil of Bahawalpur District, Punjab, Pakistan. Pak J Zool 46

  • Asi MR (2003) Solid-phase extraction and chromatographic determination of pesticides in food and water samples. Dissertation, Institute of Chemistry University of the Punjab Lahore, Pakistan Australia and Nigeria. Mater Sci Eng 737:12–17

    Google Scholar 

  • Barot J, Chaudhari K (2020) Analysis of dimethoate degradation by Kocuria turfanensis using GC–MS. Asian J Microbiol Biotechnol Environ Sci 22:107–110

    Google Scholar 

  • Begum SM, Rajesh G, Narendran RR (2016) Isolation, characterization and identification of dimethoate degrading bacteria from soil series of Tamil Nadu. Int J Adv Sci Eng Inf Technol 3:220–230

    Google Scholar 

  • Bibi A, Rafique N, Khalid S, Samad A, Ahad K, Mehboob F (2022) Method optimization and validation for the routine analysis of multi-class pesticide residues in Kinnow Mandarin and fruit quality evaluation. Food Chem 369:130914

    Article  CAS  Google Scholar 

  • Chen JQ, Wang D, Zhu MX, Gao CJ (2007) Photocatalytic degradation of dimethoate using nano-sized TiO2 powder. Desalination 207:87–94

    Article  CAS  Google Scholar 

  • Chen Q, Chen K, Ni H, Zhuang W, Wang H, Zhu J, He J (2016) A novel amidohydrolase (DmhA) from Sphingomonas sp. that can hydrolyze the organophosphorus pesticide dimethoate to dimethoate carboxylic acid and methylamine. Biotechnol Lett 38:703–710

    Article  CAS  Google Scholar 

  • Chiou CT, Peters LJ, Freed VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831–832

    Article  CAS  Google Scholar 

  • Chu YH, Yu XX, ** X, Wang YT, Zhao DJ, Zhang P, Sun GM, Zhang YH (2019) Purification and characterization of alkaline phosphatase from lactic acid bacteria. RSC Adv 9:354–360

    Article  CAS  Google Scholar 

  • Cycon M, Zmijowska A, Wojcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manage 117:7–16

    Article  CAS  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  Google Scholar 

  • Damalas CA, Khan M (2017) Pesticide use in vegetable crops in Pakistan: insights through an ordered probit model. Crop Prot 99:59–64

    Article  Google Scholar 

  • Dar MA, Kaushik G, Chiu JF (2020) Pollution status and biodegradation of organophosphate pesticides in the environment. Abate Environ Pollut pp 25–66

  • DebMandal M, Mandal S, Pal NK, Aich A (2008) Potential metabolites of dimethoate produced by bacterial degradation. World J Microbiol Biotechnol 24:69–72

    Article  CAS  Google Scholar 

  • DebMandal M, Mandal S, Pal NK (2011) Kinetics of dimethoate biodegradation in bacterial system. Microbiol Res 2:73–75

    Article  Google Scholar 

  • Derbalah A, Massoud A, El-Mehasseb I, Allah MS, Ahmed MS, Al-Brakati A, Elmahallawy EK (2021) Microbial detoxification of dimethoate and methomyl residues in aqueous media. Water 13:1117

    Article  CAS  Google Scholar 

  • Deshpande NM, Dhakephalkar PK, Kanekar PP (2001) Plasmid-mediated dimethoate degradation in Pseudomonas aeruginosa MCMB-427. Lett Appl Microbiol 33:275–279

    Article  CAS  Google Scholar 

  • Deshpande NM, Sarnaik SS, Paranjpe SA, Kanekar PP (2004) Optimization of dimethoate degradation by Brevundimonas sp. MCM B-427 using factorial design: studies on interactive effects of environmental factors. World J Microbiol Biotechnol 20:455–462

    Article  CAS  Google Scholar 

  • Deshpande NM (2002) Biodegradation of dimethoate- a carbamate group of organophosphorus insecticides. Dissertation, University of Pune

  • Dubchak S, Bondar O (2019) Bioremediation and phytoremediation: best approach for rehabilitation of soils for future use. In: Gupta DK, Voronina A (eds) Remediation measures for radioactively contaminated areas. Springer, Cham, pp 201–221

    Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Tom LM (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867

    Article  CAS  Google Scholar 

  • Dubus IG, Hollis JM, Brown CD (2000) Pesticides in rainfall in Europe. Environ Pollut 110:331–344

    Article  CAS  Google Scholar 

  • Duirk SE, Collette TW (2006) Degradation of chlorpyrifos in aqueous chlorine solutions: pathways, kinetics, and modeling. Environ Sci Technol 40:546–551

    Article  CAS  Google Scholar 

  • Dvorak P, Nikel PI, Damborsky J, de Lorenzo V (2017) Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 35:845–866

    Article  CAS  Google Scholar 

  • Dzionek A, Wojcieszynska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electr J Biotechnol 23:28–36

    Article  Google Scholar 

  • Economic Survey of Pakistan (2020–2021) Finance Division. Government of Pakistan, Islamabad, Pakistan

  • Eijaza S, Khanb MF, Mahmood K, Shaukatd S, Siddiquie AA (2012) Efficacy of different organophosphate pesticides against jassid feeding on okra (Abelmoschus esculentus). J Basic App Sci 8:6–11

    Article  Google Scholar 

  • El Beit OD, Wheelock JV, Cotton DE (1978) Separation and characterization of dimethoate metabolites develo** in soil and alkaline solution. Int J Environ Stud 12:215–225

    Article  Google Scholar 

  • European Food Safety Authority (2016) Assessment of the risk to human health through the pesticide active substance for dimethoate and its metabolites in food. EFSA J 14(4461):38

    Google Scholar 

  • Evgenidou E, Konstantinou I, Fytianos K, Albanis T (2006) Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism. J Hazard Mater B137:1056–1064

    Article  Google Scholar 

  • Fadic X, Placencia F, Domínguez AM, Cereceda-Balic F (2017) Tradescantia as a biomonitor for pesticide genotoxicity evaluation of iprodione, carbaryl, dimethoate and 4,4′-DDE. Sci Total Environ 575:146–151

    Article  CAS  Google Scholar 

  • FAO (1998) Pesticide Residues in Food: Rome (1998) Retrieved from: FAO plant production and protection paper, Food and Agriculture Organization, ISSN 0259–2517

  • FAOSTAT (2019) Food Agriculture and Organization (FAOSTAT). http://www.fao.org/faostat/en/#data/QC. Accessed 31 Oct 2020

  • Fosu PO, Donkor A, Ziwu C, Dubey B, Kingsford-Adaboh R, Asante I, Nyarko S, Tawiah R, Nazzah N (2017) Surveillance of pesticide residues in fruits and vegetables from Accra Metropolis markets, Ghana, 2010–2012: a case study in Sub-Saharan Africa. Environ Sci Pollut Res 24:17187–17205

    Article  CAS  Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicol 12:345–363

  • Geetha M, Fulekar MH (2008) Bioremediation of pesticides in surface soil treatment unit using microbial consortia. African J Environ Sci Technol 2:36–45

    Google Scholar 

  • Gowri S, Thangaraj R (2020) Studies on the toxic effects of agrochemical pesticide (monocrotophos) on physiological and reproductive behavior of indigenous and exotic earthworm species. Int J Environ Health Res 30:212–225

    Article  CAS  Google Scholar 

  • Gustavsson M, Hörnström D, Lundh S, Belotserkovsky J, Larsson G (2016) Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell exterior. Sci Rep 6:36117

    Article  CAS  Google Scholar 

  • Hasan HAH (1999) Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44:77

    Article  CAS  Google Scholar 

  • Hakeem KR, Akhtar J, Sabir M (2016) Soil science: agricultural and environmental prospectives. Springer, International Publishing AG, Switzerland, pp 199–230

    Book  Google Scholar 

  • Hayat K, Muhammad A, Muhammad AA, Sajjad A, Muhammad FS, Qaiser MK, Muhammad A, Damalas CA (2018) Insecticide exposure affects DNA and antioxidant enzymes activity in honey bee species Apis florea and A. dorsata: evidence from Punjab, Pakistan. Sci Total Environ 635:1292–1301

    Article  CAS  Google Scholar 

  • Hodgson E (2010) Metabolism of pesticides. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology. Academic Press, Massachusetts, USA, pp 893–921

    Chapter  Google Scholar 

  • Howard P (2017) Handbook of environmental fate and exposure data for organic chemicals, vol III Pesticides. Routledge

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907

    Article  CAS  Google Scholar 

  • Hussain M, Aftab K, Iqbal M, Ali S, Rizwan M, Alkahtani S, Abdel-Daim MM (2020) Determination of pesticide residue in brinjal sample using HPTLC and develo** a cost-effective method alternative to HPLC. J Chem 2020

  • Hussein MH, Abdullah AM, Badr El-Din NI, Mishaqa ESI (2017) Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. J Fertil Pestic 8

  • Ishag AES, Abdelbagi AO, Hammad AM, Elsheikh EA, Elsaid OE, Hur JH, Laing MD (2016) Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64:8491–8498

    Article  CAS  Google Scholar 

  • Jabbar A, Masud SZ, Parveen Z, Ali M (1993) Pesticide residues in cropland soils and shallow groundwater in Punjab Pakistan. Bull Environ Contam Toxicol 51:268–273

    Article  CAS  Google Scholar 

  • Jacquet P, Daudé D, Bzdrenga J, Masson P, Elias M, Chabrière E (2016) Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environ Sci Pollut Res 23:8200–8218

    Article  CAS  Google Scholar 

  • Jaggi S, Shanker A (2011) Distribution behaviour of dimethoate in tea leaf. J Environ Prot 2:482

    Article  CAS  Google Scholar 

  • Janos P, Kuran P, Kormunda M, Stengl V, Grygar TM, Dosek M, Stastny M, Ederer J, Pilarova V, Vrtoch L (2014) Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. J Rare Earths 32:360–370

    Article  CAS  Google Scholar 

  • Jiang YF, Wang XT, Jia Y, Wang F, Wu MH, Sheng GY, Fu JM (2009) Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J Haz Mat 170:989–997

    Article  CAS  Google Scholar 

  • Jurado A, Vàzquez-Suñé E, Carrera J, de Alda ML, Pujades E, Barceló D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440:82–94

    Article  CAS  Google Scholar 

  • Kamel A, Byrne C, Vigo C, Ferrario J, Stafford C, Verdin G, Hetrick J (2009) Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water. Water Res 43:522–534

    Article  CAS  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139

    Article  CAS  Google Scholar 

  • Karar H, Babar TK, Shahazad MF, Saleem M, Ali A, Akram M (2013) Performance of novel vs. traditional insecticides for the control of Amrasca biguttula (Hemiptera, Cicadellidae) on cotton. Pakistan J Agric Sci 50:223–228

    Google Scholar 

  • Katsikantami I, Colosio C, Alegakis A, Tzatzarakis MN, Vakonaki E, Rizos AK, Sarigiannis DA, Tsatsakis AM (2019) Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data – the internal exposure approach. Food Chem Toxicol 123:57–71

    Article  CAS  Google Scholar 

  • Kaur R, Goyal D (2019) Toxicity and degradation of the insecticide monocrotophos. Environ Chem Lett 17:1299–1324

    Article  CAS  Google Scholar 

  • Khan AB (2005) Studies on the residues of commonly used insecticides on fruits and vegetables grown in NWFP-Pakistan Dissertation. NWFP Agriculture University, Peshawar

    Google Scholar 

  • Khan M, Damalas CA (2015) Factors preventing the adoption of alternatives to chemical pest control among Pakistani cotton farmers. Int J Pest Manag 61:9–16

    Article  CAS  Google Scholar 

  • Khan BA, Farid A, Asi MR, Shah H, Badshah AK (2009) Determination of residues of trichlorfon and dimethoate on guava using HPLC. Food Chem 114:286–288

    Article  CAS  Google Scholar 

  • Khan M, Mahmood HZ, Damalas CA (2015) Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Prot 67:184–190

    Article  Google Scholar 

  • Khan MI, Shoukat MA, Cheema SA, Arif HN, Niazi NK, Azam M, Bashir S, Ashraf I, Qadri R (2020) Use, contamination and exposure of pesticides in Pakistan: a review. Pak J Agric Sci 1:57

    Google Scholar 

  • Kitamura K, Maruyama K, Hamano S, Kishi T, Kawakami T, Takahashi Y, Onodera S (2014) Effect of hypochlorite oxidation on cholinesterase-inhibition assay of acetonitrile extracts from fruits and vegetables for monitoring traces of organophosphate pesticides. J Toxicol Sci 39:71–81

    Article  Google Scholar 

  • Kole RK, Banerjee H, Bhattacharyya A (2001) Monitoring of market fish samples for endosulfan and hexachlorocyclohexane residues in and around Calcutta. Bull Environ Contam Toxicol 67:554–559

    Article  CAS  Google Scholar 

  • Kouser S (2019) Evaluating the factors determining pesticide residues in vegetables: a case study of lemons market in Pakistan (No. 2019: 167). Pakistan Institute of Development Economics

  • Krieger RI, Thongsinthusak T (1993) Metabolism and excretion of dimethoate following ingestion of overtolerance peas and a bolus dose. Food Chem Toxic 31:177–182

    Article  CAS  Google Scholar 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-Chuken UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28:190–208

    Article  CAS  Google Scholar 

  • Le Ha PT (2002) The study of using radioisotope to select some strains of bacteria and producing bacteria product which can degrade organophosphorus pesticide-dimethoate. Vietnam Atomic Energy Commission, 220

  • Li R, Zheng J, Wang R, Song Y, Chen Q, Yang X, Jiang J (2010) Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. Int Biodeterior Biodegrad 64:51–57

    Article  CAS  Google Scholar 

  • Li X, Yin X, Lian B (2017) The Degradation of Dimethoate and the Mineral Immobilizing Function for Cd2+ by Pseudomonas putida. Geomicrobiol J 34:346–354

    Article  CAS  Google Scholar 

  • Liang Y, Zeng F, Qiu G, Lu X, Liu X, Gao H (2009) Co-metabolic degradation of dimethoate by Raoultella sp. X1. Biodegradation 20:363–373

    Article  CAS  Google Scholar 

  • Liu YH, Zhong YC (2000) Degradation of organophosphate insecticide (dimethoate) by Aspergillus sp. Z58. Acta Sci Circumstantiae 20:95–99

    CAS  Google Scholar 

  • Liu YH, Chung YC, **ong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  CAS  Google Scholar 

  • Liu Q, Li Q, Wang N, Liu D, Zan L, Chang L (2018) Bioremediation of petroleum-contaminated soil using aged refuse from landfills. Waste Manag 77:576–585

    Article  CAS  Google Scholar 

  • Loffredo E, Castellana G (2015) Comparative evaluation of the efficiency of low-cost adsorbents and ligninolytic fungi to remove a combination of xenoestrogens and pesticides from a landfill leachate and abate its phytotoxicity. J Environ Sci Health A 50:958–970

    CAS  Google Scholar 

  • Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101

    Google Scholar 

  • Magara Y, Aizawa T, Matumoto N, Souna F (1994) Degradation of pesticides by chlorination during water purification. Water Sci Technol 30:119

    Article  CAS  Google Scholar 

  • Malheiro C, Cardoso DN, Neves J, Lima DL, Esteves VI, Soares AM, Loureiro S (2020) Biochar in soil mitigates dimethoate hazard to soil pore water exposed biota. J Hazard Mater 400:123304

    Article  CAS  Google Scholar 

  • Mandal MD, Mandal S, Pal NK (2005) Plasmid-mediated dimethoate degradation by Bacillus licheniformis isolated from a freshwater fish Labeo rohita. J Biomed Biotechnol 2005:280–286

    Article  Google Scholar 

  • Martinuzzi CS, Attademo AM, Peltzer PM, Mac Loughlin TM, Marino DJ, Lajmanovich RC (2020) Comparative toxicity of two different dimethoate formulations in the common toad (Rhinella arenarum) tadpoles. Bull Environ Contam Toxicol 104:35–40

    Article  CAS  Google Scholar 

  • Matsumoto E, Kawanaka Y, Yun SJ, Oyaizu H (2008) Isolation of dieldrin- and endrin-degrading bacteria using 1,2-epoxycyclohexane as a structural analog of both compounds. Appl Microbiol Biotechnol 80:1095–1103

    Article  CAS  Google Scholar 

  • Meffe R, de Bustamante I (2014) Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Sci Total Environ 481:280–295

    Article  CAS  Google Scholar 

  • Mehmood A, Mahmood A, Eqani SAMAS, Ishtiaq M, Ashraf A, Bibi N, Zhang G (2017) A review on emerging persistent organic pollutants: current scenario in Pakistan. Hum Ecol Risk Assess 23:1–13

    Article  CAS  Google Scholar 

  • Mirmasoomi SR, Ghazi MM, Galedari M (2017) Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol 175:418–427

    Article  CAS  Google Scholar 

  • Mitrović T, Lazović S, Nastasijević B, Pašti IA, Vasić V, Lazarević-Pašti T (2019) Non-thermal plasma needle as an effective tool in dimethoate removal from water. J Environ Manag 246:63–70

    Article  Google Scholar 

  • Montgomery MT, Coffin RB, Boyd TJ, Osburn CL (2013) Incorporation and mineralization of TNT and other anthropogenic organics by natural microbial assemblages from a small, tropical estuary. Environ Pollut 174:257–264

    Article  CAS  Google Scholar 

  • Montuori P, Aurino S, Nardone A, Cirillo T, Triassi M (2015) Spatial distribution and partitioning of organophosphates pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environ Sci Pollut Res 22:8629–8642

    Article  CAS  Google Scholar 

  • Montuori P, Aurino S, Garzonio F, Sarnacchiaro P, Polichetti S, Nardone A, Triassi M (2016) Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk. Sci Total Environ 559:218–231

    Article  CAS  Google Scholar 

  • Moss B (2008) Water pollution by agriculture. Philos Trans R Soc b: Biol Sci 363:659–666

    Article  CAS  Google Scholar 

  • Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, VomSaal FS, Welshons WV, Benbrook CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:1–13

    Article  Google Scholar 

  • National Center for Biotechnology Information (2020) Pub Chem compound summary for CID 3082, Dimethoate. https://pubchem.ncbi.nlm.nih.gov/compound/Dimethoate. Accessed 31 Oct 2020

  • Nazarian A, Amini B (2008) Detection of Pseudomonas and Flavobacterium species harboring organophosphorus degrading elements from environment. Iranian J Basic Med Sci 10:239–244

    Google Scholar 

  • Nieto LM, Hodaifa G, Casanovac MS (2009) Elimination of pesticide residues from virgin olive oil by ultraviolet light: Preliminary results. J Haz Mat 168:555–559

    Article  CAS  Google Scholar 

  • Oller I, Gernjak W, Maldonado MI, Fernandez-Ibanez P, Blanco J, Sanchez-Perez JA, Malato S (2005) Degradation of the insecticide dimethoate by solar photocatalysis at pilot plant scale. Environ Chem Lett 3:118–121

    Article  CAS  Google Scholar 

  • Ortiz-Hernández ML, Quintero-Ramirez R, Nava-Ocampo AA, Bello-Ramírez AM (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam Clin Pharmacol 17:717–723

    Article  Google Scholar 

  • Osman KA, Al-Humaid AM, Al-Rehiayani SM, Al-Redhaiman KN (2010) Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia. Ecotoxicol Envion Saf 73:1433–1439

    Article  CAS  Google Scholar 

  • Pan L, Sun J, Li Z, Zhan Y, Xu S, Zhu L (2018) Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment. Environ Sci Pollut Res 25:4–11

    Article  CAS  Google Scholar 

  • Parveen Z, Afridi IAK, Masud SZ, Baig MMH (1996) Monitoring of multiple pesticides residues in cotton seeds during three crop seasons. Pakistan J Sci Ind Res 39:146–149

    CAS  Google Scholar 

  • Parveen Z, Khuhro MI, Rafiq N (2005) Monitoring of pesticide residues in vegetables (2000–2003) in Karachi, Pakistan. Bull Environ Contam Toxicol 74:170–176

    Article  CAS  Google Scholar 

  • Parveen Z, Riazuddin A, Iqbal S, Bhutto MA, Khuhro MI (2011) Monitoring of multiple pesticide residues in some fruits in Karachi, Pakistan. Pak J Bot 43

  • Peng RH, **ong AS, Xue Y, Fu XY, Gao F, Zhao W (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Pergal MV, Kodranov ID, Dojčinović B, Avdin VV, Stanković DM, Petković BB, Manojlović DD (2020) Evaluation of azamethiphos and dimethoate degradation using chlorine dioxide during water treatment. Environ Sci Pollut Res Int 27:27147–27160

    Article  CAS  Google Scholar 

  • Pirsaheb M, Hossini H, Asadi F, Janjani H (2017) A systematic review on organochlorine and organophosphorus pesticides content in water resources. Toxin Rev 36:210–221

    CAS  Google Scholar 

  • Pirsaheb M, Nouri M, Karimi H, Mustafa YT, Hossini H, Naderi Z (2020) Occurrence of Residual Organophosphorus Pesticides in soil of some Asian countries, Australia and Nigeria. IOP Conf Ser Mater Sci Eng 737:012175

  • Pohanish RP (2014) Sittig’s handbook of pesticides and agricultural chemicals. William Andrew Publishing, New York, USA

    Google Scholar 

  • PPSGDP (2002) Environmental assessment and water quality monitoring program. Irrigation and Power Department, Government of the Punjab. Pakistan Technical Report 54

  • Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microbiol Biotechnol 6:49–360

    Article  Google Scholar 

  • Raeder J, Larson D, Li W, Kepko EL, Fuller-Rowell T (2008) Open GGCM simulations for the THEMIS mission. Space Sci Rev 141:535–555

    Article  Google Scholar 

  • Randhawa MA, Abid QUZ, Anjum FM, Chaudhary AS, Sajid MW, Khalil AA (2016) Organo-chlorine pesticide residues in okra and brinjal collected from peri-urban areas of big cities of Punjab Pakistan. Pakistan J Agric Sci 53:425–430

    Google Scholar 

  • Rao RJ, Wani KA (2015) Bioremediation of pesticides under the influence of bacteria and fungi. In Singh S, Srivastava K (ed) Handbook of research on uncovering new methods for ecosystem management through bioremediation. IGI Global, pp 51–72

  • Raymond JL, Jamison VW, Hudson JO (1975) Final report on beneficial stimulation of bacterial activity in ground water petroleum products, in AlChE Symposium Series, 73. American Petroleum Institute, Washington, DC, USA pp 390

  • Rodgers-Vieira EA, Zhang Z, Adrion AC, Gold A, Aitken MD (2015) Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 81:3775–3781

    Article  CAS  Google Scholar 

  • Saleh M, Youssef AF, Muhammed Y (2018) The potentiality of Lysinibacillus sphaericus DM-3 and Bacillus cereus DM-5 in degrading dimethoate. Egypt J Bot 58:217–232

    Google Scholar 

  • Salem AB, Chaabane H, Lahbib N, Salghi R, Fattouch S (2019) Management of phytosanitary effluent: rinsing and decontamination of empty pesticide containers by bio-detergent. Crop Prot 116:142–155

    Article  Google Scholar 

  • Samad A, Akhtar S, Shahid MM, Ahad K (2019) Determination of pesticide residues in peaches by using gas chromatography and mass spectrometric detection. Int J Environ Anal Chem 99:1446–1458

    Article  CAS  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  Google Scholar 

  • Seebunrueng K, Santaladchaiyakit Y, Srijaranai S (2014) Vortex-assisted low density solvent based demulsified dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere 103:51–58

    Article  CAS  Google Scholar 

  • Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N (2020) Global trends in pesticides: a looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812

    Article  CAS  Google Scholar 

  • Silar P, Dairou J, Cocaign A, Busi F, Rodrigues-Lima F, Dupret JM (2011) Fungi as a promising tool for bioremediation of soils contaminated with aromatic amines, a major class of pollutants. Nat Rev Microbiol 9:477–477

    Article  CAS  Google Scholar 

  • Singh J, Singh DK (2005) Bacterial, Azotobacter, Actinomycetes, and fungal population in soil after diazinon, imidacloprid, and lindane treatments in groundnut (Arachis hypogaea L.) fields. J Environ Sci Health B 40:785–800

    Article  Google Scholar 

  • Singh P, Singh VK, Singh R, Borthakur A, Madhav S, Ahamad A, Mishra PK (2020) Bioremediation: a sustainable approach for management of environmental contaminants. In: Kumar A, Borthaku A (eds) Singh P. Abate of Environmental Pollutants, Elsevier, pp 1–23

    Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128:215–228

    Article  CAS  Google Scholar 

  • Soltani N, Hooker DC, Brinkman J, Sikkema PH (2017) Effect of the addition of a fungicide to glyphosate applied post emergence on crop injury, disease control, and corn yield. Can J Plant Sci 98:971–974

    Article  Google Scholar 

  • Sud D, Kaur P (2012) Heterogeneous photocatalytic degradation of selected organophosphate pesticides: a review. Crit Rev Environ Sci Technol 42:2365–2407

    Article  CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology. Pearson Education Inc, Upper Saddle River, NJ07458

  • Tahir S, Anwar T, Ahmad I, Aziz S, Mohammad A, Ahad K (2001) Determination of pesticide residues in fruits and vegetables in Islamabad market. J Environ Biol 22:71–74

    CAS  Google Scholar 

  • Tariq MI (2005) Leaching and degradation of cotton pesticides on different soil series of cotton growing areas of Punjab, Pakistan in Lysimeters. Unpublished PhD thesis, University of the Punjab, Lahore, Pakistan

  • Thakur M, Medintz IL, Walper SA (2019) Enzymatic bioremediation of organophosphate compounds-progress and remaining challenges. Front Bioengin Biotechnol 7:289

    Article  Google Scholar 

  • Tsatsakis AM, Tsakiris IN, Tzatzarakis MN, Agourakis ZB, Tutudaki M, Alegakis AK (2003) Three-year study of fenthion and dimethoate pesticides in olive oil from organic and conventional cultivation. Food Addit Contam 20:553–559

    Article  CAS  Google Scholar 

  • Upadhyay LS, Dutt A (2017) Microbial detoxification of residual organophosphate pesticides in agricultural practices. In: Vishnuprasad C, Das G (eds) Patra J. Microb Biotechnol, Springer, Singapore pp, pp 225–242

    Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Van Scoy A, Pennell A, Zhang X (2016) Environmental fate and toxicology of dimethoate. In Reviews of Environmental Contamination and Toxicology, Springer, Cham, 237:53-70

  • Waheed S, Halsall C, Sweetman AJ, Jones KC, Malik RN (2017) Pesticides contaminated dust exposure, risk diagnosis and exposure markers in occupational and residential settings of Lahore, Pakistan. Environ Toxicol Pharmacol 56:375–382

    Article  CAS  Google Scholar 

  • Wilkinson CF, Christoph GR, Julien E, Kelley JM, Kronenberg J, McCarthy J, Reiss R (2000) Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: how to cumulate? Regul Toxicol Pharmacol 31:30–43

    Article  CAS  Google Scholar 

  • Wu CH, Liu P, Zheng LX, Chen J, Zhou ZJ (2010) GC-FPD measurement of urinary dialkylphosphate metabolites of organophosphorous pesticides as pentafluorobenzyl derivatives in occupationally exposed workers and in a general population in Shanghai (China). J Chromatogr B 878:2575–2581

    Article  CAS  Google Scholar 

  • Wu M, Li W, Dick WA, Ye X, Chen K, Kost D (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 169:124–130

    Article  CAS  Google Scholar 

  • Wu L, Chladkova B, Lechtenfeld OJ, Lian S, Schindelka J, Herrmann H, Richnow HH (2018a) Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis. Sci Total Environ 615:20–28

    Article  CAS  Google Scholar 

  • Wu L, Verma D, Bondgaard M, Melvej A, Vogt C, Subudhi S, Richnow HH (2018b) Carbon and hydrogen isotope analysis of parathion for characterizing its natural attenuation by hydrolysis at a contaminated site. Water Res 143:146–154

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighbouring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  Google Scholar 

  • Yair S, Ofer B, Arik E, Shai S, Yossi R, Tzvika D, Amir K (2008) Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications. Crit Rev Biotechnol 28:265–275

    Article  CAS  Google Scholar 

  • Yao JJ, Hoffmann MR, Gao NY, Zhang Z, Li L (2011) Sonolytic degradation of dimethoate: kinetics, mechanisms and toxic intermediates controlling. Water Res 45:5886–5894

    Article  CAS  Google Scholar 

  • Yasmin A, Ambreen S, Shabir S (2021) Biotransformation of dimethoate into novel metabolites by bacterial isolate Pseudomonas kilonensis MB490. J Environ Sci Health B 1–10

  • Yigit N, Velioglu YS (2019) Effects of processing and storage on pesticide residues in foods. Crit Rev Food Sci Nutr 60:3622–3641

    Article  Google Scholar 

  • Yuan S, Yang F, Yu H, **e Y, Guo Y, Yao W (2021) Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation. Food Chem 360:130042

    Article  CAS  Google Scholar 

  • Yuhuan L, Shubing L, Fang L (1998) Degradation of dimethoate by Aspergillus sp. L8. Shanghai Environmental Sciences 17:20–21

    Google Scholar 

  • Zaranyika MF, Mlilo J (2014) Speciation and persistence of dimethoate in the aquatic environment: characterization in terms of a rate model that takes into account hydrolysis, photolysis, microbial degradation and adsorption of the pesticide by colloidal and sediment particles. South African J Chem Eng 67:233–240

    Google Scholar 

  • Zhao XH, Wang J (2012) A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42 C. Food Chem 131:300–304

    Article  CAS  Google Scholar 

  • Zhao Y, Zhao P, Wang Y, Qi WJ (2014) Isolation, identification, and characterization of an organophosphorous pesticide degrading bacterium, Enterobacter ludwigii M2. Adv Mat Res 1051:398–403

    Google Scholar 

  • Zia MS, Khan MJ, Qasim M, Rehman A (2009) Pesticide residue in the food chain and human body inside Pakistan. J Chem Soc Pak 31:284–291

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Razi-ul-din Siddiqui, Memorial Library (DRSML), Quaid-i-Azam University, Islamabad, for providing internet facility and special access to journals content.

Author information

Authors and Affiliations

Authors

Contributions

SA wrote and critically revised the first draft; APP, FIH, and MEIB searched the literature and collected the data; RRV and TAN validated the data, reviewed, and edited the text; FHM and TM analyzed the mechanisms and prepared the final draft; HJC conceptualized and supervised the study, validated the data, and reviewed the draft.

Corresponding author

Correspondence to Hassan Javed Chaudhary.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Pinto, A.P., Hai, F.I. et al. Dimethoate residues in Pakistan and mitigation strategies through microbial degradation: a review. Environ Sci Pollut Res 29, 51367–51383 (2022). https://doi.org/10.1007/s11356-022-20933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20933-4

Keywords

Navigation