Log in

Innovative sludge pretreatment technology for impurity separation using micromesh

  • Water Environment Protection and Contamination Treatment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m3/(m2 min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m3/day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m3 treated sludge and operation cost was 0.6 yuan/m3 treated sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andoh RYG, Saul AJ (2003) The use of hydrodynamic vortex separators and screening systems to improve water quality. Water Sci Technol 47:175–183

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC

    Google Scholar 

  • Braak E, Alliet M, Schetrite S, Albasi C (2011) Aeration and hydrodynamics in submerged membrane bioreactors. J Membrane Sci 379:1–18

    Article  CAS  Google Scholar 

  • Braak E, Schetrite S, Anne-Archard D, Albasi C, Alliet M (2012) Aeration for fouling control in submerged membrane bioreactors for wastewater treatment: shear simulation and experimental validation. Procedia Eng 44:674–677

    Article  Google Scholar 

  • Braak E, Albasi C, Anne-Archard D, Schetrite S, Alliet M (2017) Impact of aeration on mixed liquor in submerged-membrane bioreactors for wastewater treatment. Chem Eng Technol 40:1453–1465

    Article  CAS  Google Scholar 

  • CDEnviro (2017) Product brochure for S: Max Screening. https://www.cdenviro.com/products/smax

  • Cheng XB (2012) Removal efficiency of solids in sludge from thickening tank by sludge filter. China Water Wastewater 28(15):82–84 (in Chinese)

    Google Scholar 

  • Chu HQ, Zhang YL, Zhou XF, Zhao YY, Dong BZ, Zhang H (2014) Dynamic membrane bioreactor for wastewater treatment: operation, critical flux, and dynamic membrane structure. J Membr Sci 450:265–271

    Article  CAS  Google Scholar 

  • Cote P, Alam Z, Penny J (2012) Hollow fiber membrane life in membrane bioreactors (MBR). Desalination 288:145–151

    Article  CAS  Google Scholar 

  • Du X, Liu XF, Wang Y, Radaei E, Lian BY, Leslie G, Li GB, Liang H (2017b) Particle deposition on flat sheet membranes under bubbly and slug flow aeration in coagulation-microfiltration process: effects of particle characteristic and shear stress. J Membr Sci 541:668–676

    Article  CAS  Google Scholar 

  • Du X, Wang Y, Leslie G, Li GB, Liang H (2017a) Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: a review. J Chem Technol Biotechnol 92:463–478

    Article  CAS  Google Scholar 

  • Frechen FB, Schier W, Linden C (2008) Pre-treatment of municipal MBR applications. Desalination 231:108–114

    Article  CAS  Google Scholar 

  • He ZW, Miller DJ, Kasemset S, Paul DR, Freeman BD (2017) The effect of permeate flux on membrane fouling during microfiltration of oily water. J Membr Sci 525:25–34

    Article  CAS  Google Scholar 

  • HUBER (2017) Product brochure for Sludgecleaner STRAINPRESS®. http://www.huber.de/fileadmin/01_products/04_sludge/01_sieben/01_strainpress/pro_sp_en.pdf

  • Hydro (2017) Product brochure for Hydro-Sludge™ Screen. http://www.hydro-int.com/us/products/hydro-sludge-screen?s=0&r=us

  • Jank A, Müller W, Waldhuber S, Gerke F, Ebner C, Bockreis A (2017) Hydrocyclones for the separation of impurities in pretreated biowaste. Waste Manag 64:12–19

    Article  Google Scholar 

  • Jiang LY, Yang CF, Hu QY, Li X, Guo ZY (2013) Operation analysis of sludge anaerobic digestion system at Bailonggang wastewater treatment plant. China Water Wastewater 29(9):33–37 (in Chinese)

    CAS  Google Scholar 

  • Jiang TH, Chen X, Wang WS, Lu XF (2015) Technological transformation and optimized operation of sludge treatment system in WWTP. China Water Wastewater 31(6):82–84 (in Chinese)

    Google Scholar 

  • JWC (2017) Product brochure for Honey Monster® Sludge Screening. https://www.jwce.com/blog/2010/05/17/new-sludge-screening-plant-makes-sludge-receiving-easier-cleaner

  • Khalili-Garakani A, Mehrnia MR, Mostoufi N, Sarrafzadeh MH (2011) Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies. Process Biochem 46:1138–1145

    Article  CAS  Google Scholar 

  • Li XY, Wang XM (2006) Modelling of membrane fouling in a submerged membrane bioreactor. J Membr Sci 278:151–161

    Article  CAS  Google Scholar 

  • Lousada-Ferreira M, van Lier JB, van der Graaf JHJM (2015) Impact of suspended solids concentration on sludge filterability in full-scale membrane bioreactors. J Membr Sci 476:68–75

    Article  CAS  Google Scholar 

  • Meng FG, Zhang HM, Yang FL, Zhang ST, Li YS, Zhang XW (2006) Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors. Sep Sci Technol 51:95–103

    CAS  Google Scholar 

  • Ndinisa NV, Fane AG, Wiley DE, Fletcher DF (2006) Fouling control in a submerged flat sheet membrane system: part II—two-phase flow characterization and CFD simulations. Sep Sci Technol 41:1411–1445

    Article  CAS  Google Scholar 

  • Qi L, Wu SC, Cheng JH, Hu YY (2017) The effects of physicochemical properties of sludge on dewaterability under chemical conditioning with amphoteric polymer. J Polym Environ 25:1262–1272

    Article  CAS  Google Scholar 

  • Romero-Güiza MS, Peces M, Astals S, Benavent J, Valls J, Mata-Alvarez J (2014) Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion. Appl Energ 135:63–70

    Article  Google Scholar 

  • Ruiken C, Breuer G, Klaversma E, Santiago T, van Loosdrecht MCM (2013) Sieving wastewater—cellulose recovery, economic and energy evaluation. Water Res 47:43–48

    Article  CAS  Google Scholar 

  • Stefanski M, Kennedy S, Judd S (2011) The determination and origin of fibre clogging in membrane bioreactors. J Membr Sci 375(1–2):198–203

    Article  CAS  Google Scholar 

  • Temmerman LD, Maere T, Temmink H, Zwijnenburg A, Nopens I (2015) The effect of fine bubble aeration intensity on membrane bioreactor sludge characteristics and fouling. Water Res 76:99–109

    Article  Google Scholar 

  • USEPA (1999) Combined sewer overflow technology fact sheet screens. Office of Water, Washington, D.C

    Google Scholar 

  • Wang ZW, Wu ZC (2009) A review of membrane fouling in MBRs: characteristics and role of sludge cake formed on membrane surfaces. Sep Sci Technol 44:3571–3596

    Article  CAS  Google Scholar 

  • Wei P, Zhang KS, Gao WM, Kong LX, Field R (2013) CFD modeling of hydrodynamic characteristics of slug bubble in a flat sheet membrane bioreactor. J Membr Sci 445:15–24

    Article  CAS  Google Scholar 

  • **e F, Liu JR, Wang JM, Chen WW (2016) Computational fluid dynamics simulation and particle image velocimetry experimentation of hydrodynamic performance of flat-sheet membrane bioreactor equipped with micro-channel turbulence promoters with micro-pores. Korean J Chem Eng 33:2169–2178

    Article  CAS  Google Scholar 

  • Yang M, Yu DW, Liu MM, Zheng LB, Zheng X, Wei YS, Wang F, Fan YB (2017) Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design. Bioresour Technol 227:102–111

    Article  CAS  Google Scholar 

Download references

Funding

This work received support from the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF16031) and Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07201005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aomeng Han.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, X., Han, X., Zang, L. et al. Innovative sludge pretreatment technology for impurity separation using micromesh. Environ Sci Pollut Res 26, 30625–30632 (2019). https://doi.org/10.1007/s11356-018-2324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2324-4

Keywords

Navigation