Log in

Identification of a Putative α-synuclein Radioligand Using an in silico Similarity Search

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies from our lab utilized an ultra-high throughput screening method to identify compound 1 as a small molecule that binds to alpha-synuclein (α-synuclein) fibrils. The goal of the current study was to conduct a similarity search of 1 to identify structural analogs having improved in vitro binding properties for this target that could be labeled with radionuclides for both in vitro and in vivo studies for measuring α-synuclein aggregates.

Methods

Using 1 as a lead compound in a similarity search, isoxazole derivative 15 was identified to bind to α-synuclein fibrils with high affinity in competition binding assays. A photocrosslinkable version was used to confirm binding site preference. Derivative 21, the iodo-analog of 15, was synthesized, and subsequently radiolabeled isotopologs [125I]21 and [11C]21 were successfully synthesized for use in in vitro and in vivo studies, respectively. [125I]21 was used in radioligand binding studies in post-mortem Parkinson’s disease (PD) and Alzheimer’s disease (AD) brain homogenates. In vivo imaging of an α-synuclein mouse model and non-human primates was performed with [11C]21.

Results

In silico molecular docking and molecular dynamic simulation studies for a panel of compounds identified through a similarity search, were shown to correlate with Ki values obtained from in vitro binding studies. Improved affinity of isoxazole derivative 15 for α-synuclein binding site 9 was indicated by photocrosslinking studies with CLX10. Design and successful (radio)synthesis of iodo-analog 21 of isoxazole derivative 15 enabled further in vitro and in vivo evaluation. Kd values obtained in vitro with [125I]21 for α-synuclein and Aβ42 fibrils were 0.48 ± 0.08 nM and 2.47 ± 1.30 nM, respectively. [125I]21 showed higher binding in human postmortem PD brain tissue compared with AD tissue, and low binding in control brain tissue. Lastly, in vivo preclinical PET imaging showed elevated retention of [11C]21 in PFF-injected mouse brain. However, in PBS-injected control mouse brain, slow washout of the tracer indicates high non-specific binding. [11C]21 showed high initial brain uptake in a healthy non-human primate, followed by fast washout that may be caused by rapid metabolic rate (21% intact [11C]21 in blood at 5 min p.i.).

Conclusion

Through a relatively simple ligand-based similarity search, we identified a new radioligand that binds with high affinity (<10 nM) to α-synuclein fibrils and PD tissue. Although the radioligand has suboptimal selectivity for α-synuclein towards Aβ and high non-specific binding, we show here that a simple in silico approach is a promising strategy to identify novel ligands for target proteins in the CNS with the potential to be radiolabeled for PET neuroimaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data needed to evaluate the conclusions of the paper are present in the paper and/or the Supplementary Materials.

References

  1. Henderson MX, Trojanowski JQ, Lee VM (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seibyl JP (2022) Alpha-synuclein PET and Parkinson disease therapeutic trials: ever the twain shall meet? J Nucl Med 63(10):1463–1466

  3. Pancoe SX et al (2022) Effects of mutations and post-translational modifications on α-synuclein in vitro aggregation. J Mol Biol 434(23):167859

    Article  CAS  PubMed  Google Scholar 

  4. Gibb W, Lees A (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51(6):745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibb W, Lees A (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol Appl Neurobiol 15(1):27–44

    Article  CAS  PubMed  Google Scholar 

  6. Jellinger KA, Seppi K, Wenning GK (2005) Grading of neuropathology in multiple system atrophy: proposal for a novel scale. Mov Disord Off J Mov Disord Soc 20(S12):S29–S36

    Article  Google Scholar 

  7. Dickson D et al (1999) Widespread alterations of α-synuclein in multiple system atrophy. Am J Pathol 155(4):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cykowski MD et al (2015) Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 138(8):2293–2309

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prasad EM, Hung SY (2021) Current therapies in clinical trials of Parkinson’s disease: a 2021 update. Pharmaceuticals (Basel) 14(8):717

  10. Smit JW et al (2022) Phase 1/1b Studies of UCB0599, an Oral Inhibitor of α-Synuclein Misfolding, Including a Randomized Study in Parkinson’s Disease. Mov Disord 37(10):2045–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buddhala C et al (2015) Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann Clin Transl Neurol 2(10):949–959

  12. Covell DJ et al (2017) Novel conformation-selective alpha-synuclein antibodies raised against different in vitro fibril forms show distinct patterns of Lewy pathology in Parkinson’s disease. Neuropathol Appl Neurobiol 43(7):604–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Y et al (2018) Amyloid fibril structure of alpha-synuclein determined by cryo-electron microscopy. Cell Res 28(9):897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kotzbauer PT, Tu Z, Mach RH (2017) Current status of the development of PET radiotracers for imaging alpha synuclein aggregates in Lewy bodies and Lewy neurites. Clin Transl Imaging 5(1):3–14

    Article  Google Scholar 

  15. Ferrie JJ et al (2020) Identification of a nanomolar affinity α-synuclein fibril imaging probe by ultra-high throughput in silico screening. Chem Sci 11(47):12746–12754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson DK, Karanicolas J (2016) Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein-Protein Interactions. J Chem Inf Model 56(2):399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brundin P, Dave KD, Kordower JH (2017) Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 298(Pt B):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh CJ et al (2018) Alpha Synuclein Fibrils Contain Multiple Binding Sites for Small Molecules. ACS Chem Neurosci 9(11):2521–2527

    Article  CAS  PubMed  Google Scholar 

  19. Lengyel-Zhand Z et al (2020) Synthesis and characterization of high affinity fluorogenic alpha-synuclein probes. Chem Commun (Camb) 56(24):3567–3570

    Article  CAS  PubMed  Google Scholar 

  20. Sonustun B et al (2022) Pathological relevance of post-translationally modified alpha-synuclein (pSer87, pSer129, nTyr39) in idiopathic Parkinson’s disease and multiple system atrophy. Cells 11(5):906

  21. Schmid AW et al (2013) Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol Cell Proteomics 12(12):3543–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fauvet B, Lashuel HA (2016) Semisynthesis and enzymatic preparation of post-translationally modified α-synuclein. Methods Mol Biol 1345:3–20

    Article  CAS  PubMed  Google Scholar 

  23. Kaide S, Watanabe H, Shimizu Y, Iikuni S, Nakamoto Y, Hasegawa M, Itoh K, Ono M (2020) Identification and evaluation of bisquinoline scaffold as a new candidate for α-synuclein-PET imaging. ACS Chem Neurosci 11(24):4254-4261

  24. Pan B et al (2021) Chemoenzymatic semi-synthesis enables efficient production of isotopically labeled α-synuclein with site-specific tyrosine phosphorylation. ChemBioChem 22(8):1440–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan B, Rhoades E, Petersson EJ (2020) Chemoenzymatic semisynthesis of phosphorylated α-synuclein enables identification of a bidirectional effect on fibril formation. ACS Chem Biol 15(3):640–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao K et al (2020) Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc Natl Acad Sci 117(33):20305–20315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang S et al (2023) Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein. Nat Neurosci 26:213–225

  28. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  31. Riad A et al (2020) The sigma-2 receptor/TMEM97, PGRMC1, and LDL receptor complex are responsible for the cellular uptake of Aβ42 and its protein aggregates. Mol Neurobiol 57:3803–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klunk WE et al (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 69(13):1471–1484

    Article  CAS  PubMed  Google Scholar 

  33. Lougee MG et al (2022) Harnessing the intrinsic photochemistry of isoxazoles for the development of chemoproteomic crosslinking methods. Chem Commun 58(65):9116–9119

    Article  CAS  Google Scholar 

  34. Montine TJ et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed  Google Scholar 

  35. McKeith IG et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89(1):88–100

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bagchi DP et al (2013) Binding of the radioligand SIL23 to α-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for develo** a Parkinson disease imaging agent. PloS one 8(2):e55031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klunk WE et al (2003) The binding of 2-(4′-methylaminophenyl) benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23(6):2086–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luk KC et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mirrione MM et al (2007) A novel approach for imaging brain–behavior relationships in mice reveals unexpected metabolic patterns during seizures in the absence of tissue plasminogen activator. Neuroimage 38(1):34–42

    Article  PubMed  Google Scholar 

  40. Karp JS et al (2003) Performance of a brain PET camera based on anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 44(8):1340–1349

    CAS  PubMed  Google Scholar 

  41. DePierro A (1989) On some nonlinear iterative relaxation methods in remote sensing. Mat Apl Comput 8:153–166

    Google Scholar 

  42. Browne J, De Pierro A (1996) A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging 15(5):687–699

    Article  CAS  PubMed  Google Scholar 

  43. Daube-Witherspoon ME, Matej S, Karp JS (2001) Assessment of image quality with a fast fully 3D reconstruction algorithm. 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No. 01CH37310), San Diego, pp 2238–2242 vol. 4

  44. Maurer A et al (2020) 11C radiolabeling of anle253b: a putative PET tracer for Parkinson’s disease that binds to α-synuclein fibrils in vitro and crosses the blood-brain barrier. Chem Med Chem 15(5):411–415

  45. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  46. Pang A et al (2003) Interdomain dynamics and ligand binding: molecular dynamics simulations of glutamine binding protein. FEBS Lett 550(1–3):168–74

    Article  CAS  PubMed  Google Scholar 

  47. Brettschneider J et al (2018) Converging Patterns of alpha-Synuclein Pathology in Multiple System Atrophy. J Neuropathol Exp Neurol 77(11):1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zarranz JJ et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    Article  CAS  PubMed  Google Scholar 

  49. Chu W et al (2015) Design, synthesis, and characterization of 3-(Benzylidene)indolin-2-one derivatives as ligands for alpha-synuclein fibrils. J Med Chem 58(15):6002–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKeith IG et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47(5):1113–1124

    Article  CAS  PubMed  Google Scholar 

  51. Kikuchi A et al (2010) In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 133(Pt 6):1772–8

    Article  PubMed  Google Scholar 

  52. Irwin DJ, Lee VM-Y, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14(9):626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tuttle MD et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol 23(5):409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the Michael J. Fox Foundation and NIH grant U19-NS110456. M.G.L. was supported by an Age Related Neurodegenerative Disease Training Grant fellowship (NIH T32-AG000255). H.J.K. was supported by an NIH Predoctoral Fellowship (NIH F31-AG069390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Mach.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4310 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssen, B., Tian, G., Lengyel-Zhand, Z. et al. Identification of a Putative α-synuclein Radioligand Using an in silico Similarity Search. Mol Imaging Biol 25, 704–719 (2023). https://doi.org/10.1007/s11307-023-01814-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01814-9

Keywords

Navigation