Log in

Secrecy Enhancement in AF Relaying Assisted SWIPT-NOMA via Power Optimization and Control-Jamming

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work aims at achieving the secrecy rate (SR) enhancement in amplify-and-forward (AF) relay-aided simultaneous wireless information and power transfer (SWIPT)-NOMA network via control-jamming (CJ) whilst satisfying the constraints on total transmit power budget. Here, in order to coordinate the information processing and energy-harvesting (EH), power-splitting (PS) protocol is deployed at the relay. For comparison purposes, in addition to CJ, the SR of with-jamming (J) and without-jamming (WJ) conditions are also highlighted in the existence of an eavesdropper (Eve). Moreover, the analytical expression for Ergodic SR is evaluated at the NOMA users under the CJ scenario. Next, to maximize the SR of the users further, an optimal power allocation (OPA) scheme has been adopted, which involves both particle swarm optimization (PSO) and Lagrangian multiplier (LM)-based approaches to acquire the optimized power factors of various nodes of the network. In addition, we analyzed the affect of major parameters such as: \(J \to Eve\) distance, transmit signal-to-noise ratio (SNR), and \(R \to Eve\) distance on the SR by exploiting distinct jamming scenarios. Finally, a significant secrecy performance gain in terms of SR is verified with proposed CJ over other jamming conditions and OPA over the fixed power allocation (FPA) and it is confirmed through Monte-Carlo based simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and Materials Availability

Not applicable.

Abbreviations

NOMA:

Non-orthogonal multiple access

PLS:

Physical layer security

CJ:

Control-jamming

AF:

Amplify-and-forward

CSI:

Channel state information

SWIPT:

Simultaneous wireless information and power transfer

WJ:

Without-jamming

SR:

Secrecy rate

\(P_{r} ,\,P_{s} ,\,P_{j}\) :

Powers at relay, source, and jammer

\(R \to Eve\) :

Relay-to-eavesdropper

\(J \to Eve\) :

Jammer-to-eavesdropper

\(d_{sr} ,\,d_{{ru_{i} }} ,\,d_{re} ,\,d_{je}\) :

Distances between different links

\(n_{sr} ,\,n_{{ru_{i} }} ,\,n_{re} ,\,n_{je}\) :

AWGN of different links \(\sim \left\{ {CN(0,\sigma_{A}^{2} )} \right\}\)

\(h_{sr} , \, h_{{ru_{i} }} , \, h_{re} , \, h_{je}\) :

Channel coefficients of different links \(\sim\)\(\left\{ {CN(0,\Omega_{1} )} \right\}\)

References

  1. Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non–orthogonal multiple access for 5G wireless communication networks. ZTE Communications, 14(4), 17–26.

    Google Scholar 

  2. Wan, D., Wen, M., Cheng, X., Mumtaz, S., & Guizani, M. (2019). A promising non-orthogonal multiple access based networking architecture: Motivation conception and evolution. IEEE Wireless Communications, 26(5), 152–159.

    Article  Google Scholar 

  3. Abbasi, O., Ebrahimi, A., & Mokari, N. (2019). NOMA inspired cooperative relaying system using an AF relay. IEEE Wireless Communications Letters, 8(1), 261–264.

    Article  Google Scholar 

  4. Kim, J.-B., & Lee, I.-H. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communications Letters, 19(11), 1949–1952.

    Article  Google Scholar 

  5. Aswathi, V., & Babu, A. V. (2021). Full/half duplex cooperative relaying NOMA network under power splitting based SWIPT: Performance analysis and optimization. Physical Communication. https://doi.org/10.1016/j.phycom.2021.101335

    Article  Google Scholar 

  6. Tran, H., Van Ca, P., & Vien, Q.-T. (2020). Power splitting versus time switching based cooperative relaying protocols for SWIPT in NOMA systems. Physical Communication, 41, 101098.

    Article  Google Scholar 

  7. Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2017). The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Transactions on Wireless Communications, 16, 4332–4343.

    Article  Google Scholar 

  8. He, B., Liu, A., Yang, N., & Lau, V. K. N. (2017). On the design of secure non-orthogonal multiple access systems. IEEE Journal on Selected Areas in Communications, 35(10), 2196–2206.

    Article  Google Scholar 

  9. Zhang, Y., Wang, H. M., Yang, Q., & Ding, Z. (2016). Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Communications Letters, 20(5), 930–933. https://doi.org/10.1109/LCOMM.2016.2539162

    Article  Google Scholar 

  10. Amin, I., Mishra, D., Saini, R., & Aissa, S. (2022). QoS-aware secrecy rate maximization in untrusted NOMA with trusted relay. IEEE Communications Letters, 26(1), 31–34.

    Article  Google Scholar 

  11. Melki, R., Noura, H. N., & Chehab, A. (2020). Physical layer security for NOMA: Limitations, issues, and recommendations. Annals of Telecommunications, 76, 375–397.

    Article  Google Scholar 

  12. Chen, J., Yang, L., & Alouini, M.-S. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67(5), 4645–4649.

    Article  Google Scholar 

  13. van Nguyen, M. S., & Do, D. T. (2019). Evaluating secrecy performance of cooperative NOMA networks under existence of relay link and direct link. International Journal of Communication Systems, 33(6), e4284.

    Article  Google Scholar 

  14. Tian, M., Zhao, S., Li, Q., & Qin, J. (2019). Secrecy sum rate optimization in nonorthogonal multiple access AF relay networks. IEEE Systems Journal, 13(3), 2712–2715.

    Article  Google Scholar 

  15. Ojo, F. K., & Salleh, M. F. M. (2018). Secrecy analysis of SWIPT-enabled cooperative networks with DF HPTSR protocol. IEEE Access, 6, 65996–66006.

    Article  Google Scholar 

  16. Tang, J., Dai, T., Cui, M., Zhang, X. Y., Shojaeifard, A., Wong, K., et al. (2018). Optimization for maximizing sum secrecy rate in swipt-enabled noma systems. IEEE Access, 6, 43440–43449.

    Article  Google Scholar 

  17. Ibrahim, D. H., Hassan, E. S., & El-Dolil, S. A. (2014). A new relay and jammer selection schemes for secure one-way cooperative networks. Wireless Personal Communications, 75(1), 665–685.

    Article  Google Scholar 

  18. Jameel, F., Wyne, S., Kaddoum, G., & Duong, T. (2019). A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Communications Surveys and Tutorials, 21(3), 2734–2771.

    Article  Google Scholar 

  19. Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177.

    Article  Google Scholar 

  20. Yu, C., Ko, H.-L., Peng, X., **e, W., & Zhu, P. (2019). Jammer-aided secure communications for cooperative NOMA systems. IEEE Communications Letters, 23(11), 1935–1939.

    Article  Google Scholar 

  21. Cao, Y., et al. (2020). Power optimization for enhancing secrecy of cooperative user relaying NOMA networks. IEEE Transactions on Vehicular Technology, 69(7), 8008–8012.

    Article  Google Scholar 

  22. Narasimha Nayak, V., & Gurrala, K. K. (2021). Power allocation‐Assisted secrecy analysis for NOMA enabled cooperative network under multiple eavesdroppers. ETRI Journal, 43(4), 758–768. https://doi.org/10.4218/etrij.2020-0084

    Article  Google Scholar 

  23. Salem, A., & Musavian, L. (2021). NOMA in cooperative communication systems with energy-harvesting nodes and wireless secure transmission. IEEE Transactions on Wireless Communications, 20(2), 1023–1037.

    Article  Google Scholar 

  24. Lei, R., Xu, D., & Ahmad, I. (2021). Secrecy outage performance analysis of cooperative NOMA networks with SWIPT. IEEE Wireless Communications Letters, 10(7), 1474–1478.

    Article  Google Scholar 

  25. Leung-Yan-Cheong, S., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456. https://doi.org/10.1109/TIT.1978.1055917

    Article  MathSciNet  Google Scholar 

  26. Gurrala, K. K., & Das, S. (2016). Maximized channel capacity based power allocation technique for multi relay hybrid decode-amplify-forward cooperative network. Wireless Personal Communications, 87(3), 663–678.

    Article  Google Scholar 

  27. Garcia, C. E., Camana, M. R., Koo, I., & Rahman, M. A. (2019). Particle swarm optimization-based power allocation scheme for secrecy sum rate maximization in NOMA with cooperative relaying. In D. S. Huang, K. H. Jo, & Z. K. Huang (Eds.), Intelligent computing theories and application LNCS (pp. 1–12). Springer. https://doi.org/10.1007/978-3-030-26969-2_1

    Chapter  Google Scholar 

  28. Qin, A. K., & Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for numerical optimization. In Proceeding of the IEEE congress on evolutionary computation, 1785–1791.

  29. Mondal, S., Roy, S. D., & Kundu, S. (2021). Partial relay selection in energy harvesting based NOMA network with imperfect CSI. Wireless Personal Communications, 120, 3153–3169.

    Article  Google Scholar 

  30. Kara, F., & Kaya, H. (2020). Improved user fairness in decode-forward relaying non-orthogonal multiple access schemes with imperfect SIC and CSI. IEEE Access, 8, 97540–97556.

    Article  Google Scholar 

Download references

Funding

The authors have not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

1. Dr. V. Narasimha Nayak is responsible for the overall design, investigation, initial drafting of the manuscript and simulation result analysis. 2. Dr. Kiran Kumar Gurrala is responsible for the writing and editing of the manuscript.

Corresponding author

Correspondence to V. Narasimha Nayak.

Ethics declarations

Conflict of interest

There is no conflict of interest for this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Evaluation of SR in WJ condition

The expression for SR at the NOMA users in WJ (absence of jammer) condition is formulated as

$$ C_{AF\_Ui}^{wj} = 0.5*\log_{2} (1 + \gamma_{Ui}^{wj} ) - 0.5*\log_{2} (1 + \gamma_{Ei}^{wj} )\quad i = 1,2 \, $$
(A.1)

In this scenario, due to the absence of jammer, the Eve acquires only the confidential information via the EH relay and it can be designated as

$$ y_{e} = y_{re} = kh_{re} \left( {h_{sr} (\sqrt {(1 - \varphi )P_{s} a_{1} } x_{1} + \sqrt {(1 - \varphi )P_{s} a_{2} } x_{2} ) + n_{sr} } \right) + n_{re} $$
(A.2)

So, the SNR of the Eve is determined as

$$ \gamma_{Ei}^{wj} = \frac{{k^{2} (1 - \varphi )P_{s} a_{i} \left| {h_{sr} } \right|^{2} \left| {h_{re} } \right|^{2} }}{{(k^{2} \left| {h_{re} } \right|^{2} + 1)N_{0} }}\quad i = 1,2 $$
(A.3)

Finally, we substitute (A.3), (8), and (9) in (A.1) to evaluate the SR at the NOMA users.

Appendix B

Evaluation of SR in ‘J’ condition

The expression for SR at the NOMA users in ‘J’ condition is denoted as

$$ C_{AF\_Ui}^{j} = 0.5*\log_{2} (1 + \gamma_{Ui}^{j} ) - 0.5*\log_{2} (1 + \gamma_{Ei}^{j} )\quad i = 1,2 \, $$
(A.4)

In this scenario, users acquire confidential message from the relay and also the jamming signal from the jammer, which can be denoted as

$$ y_{{u_{i} }} = y_{{ju_{i} }} + \, y_{{ru_{i} }} $$
(A.5)

where

$$ y_{{ju_{i} }} = \sqrt {P_{j} } \, h_{{ju_{i} }} x + n_{{ju_{i} }} \& y_{{ru_{i} }} = kh_{{ru_{i} }} \left( {h_{sr} (\sqrt {(1 - \varphi )P_{s} a_{1} } x_{1} + \sqrt {(1 - \varphi )P_{s} a_{2} } x_{2} ) + n_{sr} } \right) + n_{{ru_{i} }} \quad i = 1,2 $$
(A.6)

From (A.6), the obtained SINR and SNR for the users U1 and U2 to detect x1 and x2 are respectively given as

$$ \gamma_{U1}^{j} = \frac{{k^{2} (1 - \varphi )P_{s} a_{1} \left| {h_{sr} } \right|^{2} \left| {h_{ru1} } \right|^{2} }}{{k^{2} (1 - \varphi )P_{s} a_{2} \left| {h_{sr} } \right|^{2} \left| {h_{ru1} } \right|^{2} + (k^{2} \left| {h_{ru1} } \right|^{2} + 2)N_{0} + P_{j} \left| {h_{{ju_{1} }} } \right|^{2} }}\,\& \,\gamma_{U2}^{j} = \frac{{k^{2} (1 - \varphi )P_{s} a_{2} \left| {h_{sr} } \right|^{2} \left| {h_{ru2} } \right|^{2} }}{{(\beta^{2} \left| {h_{ru2} } \right|^{2} + 2)N_{0} + P_{j} \left| {h_{{ju_{2} }} } \right|^{2} }} $$
(A.7)

The SNR obtained at the Eve is given in (11).

SR can be evaluated by substituting (A.7) and (11) in (A.4).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, V.N., Gurrala, K.K. Secrecy Enhancement in AF Relaying Assisted SWIPT-NOMA via Power Optimization and Control-Jamming. Wireless Pers Commun 135, 431–450 (2024). https://doi.org/10.1007/s11277-024-11057-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11057-8

Keywords

Navigation