Log in

Various Expressions over Novel k-µ/Inverse Gamma LOS Shadowed Fading

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This manuscript proposes a novel, very general shadowed k-μ fading model for characterizing the realistic line-of-sight (LOS) propagation scenarios of 5G and beyond. In this model, statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, shadowing of the dominant component is represented by the inverse Gamma distribution. First of all, mathematically-tractable expressions of probability density function (PDF) and moment-generating function (MGF) of the k-μ/inverse Gamma LOS-shadowed fading model are obtained. The proposed channel model is validated by reproducing the well-established fading distributions such as Rayleigh, Rice (Nakagami-n) and Nakagami-m under light shadowing conditions and LOS-shadowed fading distributions such as the k-µ/Gamma and Abdi’s Rice/Gamma model under heavy shadowing conditions numerically. The proposed PDF is further utilized to derive the expressions for channel capacity under optimal rate adaptation with constant transmit power (CORA), optimal power and rate adaptation (COPRA), channel inversion with fixed rate (CCIFR) and truncated channel inversion (CCIFR). Furthermore, analytical expressions for outage probability (OP) and error probabilities under different modulation schemes are derived. The analytical expressions are studied under infrequent light, moderate, and frequent heavy shadowing environments used extensively in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Bithas, P. S., Kanatas, A. G., & Matolak, D. W. (2018). Exploiting shadowing stationarity for antenna selection in V2V communication. IEEE Transactions on Vehicular Technology, 68(2), 1607–1615.

    Article  Google Scholar 

  2. Matolak, D. W. (2013). V2V communication channels: state of knowledge, new results, and what’s next. In Proc. Int. Workshop Commun. Technol. Veh (pp. 1–22).

  3. Tank, T., & Linnartz, J.-P.M.G. (1997). Vehicle to vehicle communications for AVCS platooning. IEEE Transactions on Vehicular Technology, 46(2), 528–536.

    Article  Google Scholar 

  4. Cotton, S. L. (2014). Human body shadowing in cellular device-to-device communications: Channel modeling using the shadowed k–μ fading model. IEEE Journal on Selected Areas in Communications, 33(1), 111–119.

    Article  Google Scholar 

  5. Ca˜nete, F. J., L´opez-Fern´andez, J., Garc´ıa-Corrales, C., S´anchez, A., Robles, E., Rodrigo, F. J. & Paris, J. F. (2016). Measurement and modelling of narrowband channels for ultrasonic underwater communications. Sensors, 16(2), 256.

  6. Cotton, S. L. (2014). A statistical model for shadowed body-centric communications channels: Theory and validation. IEEE Transactions on Antennas and Propagation, 62(3), 1416–1424.

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdi, W. C., Lau, M.-S., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: First- and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519–528.

    Article  Google Scholar 

  8. Lu, J. S., Steinbach, D., Cabrol, P., & Pietraski, P. (2012). Modeling human blockers in millimeter wave radio links. ZTE Communications, 10(4), 23–28.

    Google Scholar 

  9. Simon, M. K., & Alouni, M. S. (2005). Digital communication over fading channels: A unified approach to performance analysis (2nd ed.). Wiley.

    Google Scholar 

  10. Loo, C. (1985). A statistical model for a land mobile satellite link. IEEE Transactions on Vehicular Technology, 34(3), 122–127.

    Article  Google Scholar 

  11. Paris, J. F. (2014). Statistical characterization of k–μ shadowed fading. IEEE Transactions on Vehicular Technology, 63(2), 518–526.

    Article  Google Scholar 

  12. Parthasarathy, S., & Ganti, R. K. (2016). Coverage analysis in downlink Poisson cellular network with k-µ shadowed Fading. IEEE Wireless Communications Letters, 6(1), 10–13.

    Google Scholar 

  13. Chun, Y. J., Cotton, S. L., Dhillon, H. S., Javier Lopez-Martinez, F., Paris, J. F., & Yoo, S. K. (2017). A comprehensive analysis of 5G heterogeneous cellular systems operating over k–μ shadowed fading channels. IEEE Transactions on Wireless Communications, 16(11), 6995.

    Article  Google Scholar 

  14. Ramírez-Espinosa, P. & Javier Lopez-Martinez, F. (2019). On the utility of the inverse Gamma distribution in modeling composite fading channels. ar**v preprint ar**v:1905.00069.

  15. Barbiroli, M., Fuschini, F., Tartarini, G., & Corazza, G. E. (2017). Smart metering wireless networks at 169 MHz. IEEE Access, 5, 8357–8368.

    Article  Google Scholar 

  16. Barbiroli, M., Fuschini, F., Tartarini, G., & Corazza, G. E. (1998). K distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  17. Ai, K., Guan, R., He, J., Li, G., Li, D., He, Z. Z., & Huq, K. M. S. (2017). On indoor millimeter wave massive MIMO channels: Measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690.

    Article  Google Scholar 

  18. Yoo, S. K. et al. (2015). The k-µ/inverse gamma fading model. In IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 425–429).

  19. Yoo, S. K. et al. (2017). The k-μ/inverse gamma and η-μ/inverse gamma composite fading models: Fundamental statistics and empirical validation. IEEE Transactions on Communications.

  20. Yoo, S. K., et al. (2017). The fisher-Snedecor $\mathcal F $ distribution: A simple and accurate composite fading model. IEEE Communications Letters, 21(7), 1661–1664.

    Article  Google Scholar 

  21. Yoo, S. K. & Cotton, S. L. (2017). Composite fading in non-line-of-sight off-body communications channels. In 11th European conference on antennas and propagation (EUCAP) (pp. 286–290).

  22. Sofotasios, P. C., Yoo, S. K., Muhaidat, S., Cotton, S. L., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2018). Error analysis of wireless transmission over generalized multipath/shadowing channels. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6).

  23. Sofotasios, P. C., Yoo, S. K., Muhaidat, S., Cotton, S. L., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2018). Ergodic capacity analysis of wireless transmission over generalized multipath/shadowing channels. In IEEE 87th vehicular technology conference (VTC Spring) (pp. 1–5).

  24. Yacoub, M. D. (2007). The k-μ and the η-μ distribution. IEEE Antennas and Propagation Magazine, 49, 68–81.

    Article  Google Scholar 

  25. Gradshteyn, S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). Academic.

    MATH  Google Scholar 

  26. Goldsmith, & Varaiya, P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43, 1896–1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. García-Corrales, C., Cañete, F. J., & Paris, J. F. (2014). Capacity of k-μ shadowed fading channels. International Journal of Antennas and Propagation.

  28. Functions.wolfram.com.

  29. Peppas, K. P., Nistazakis, E. H., & Tombras, G. S. (2013). An overview of the physical insight and the various performance metrics of fading channels in wireless communication systems. Advanced Trends in Wireless Communications, 2011, 1–22.

    Google Scholar 

  30. McKay, M. R., et al. (2009). Error probability and SINR analysis of optimum combining in Rician fading. IEEE Transactions on Communications, 57(3), 676–687.

    Article  Google Scholar 

  31. Yang, N., Yeoh, P. L., Elkashlan, M., Yuan, J., & Collings, I. B. (2012). Cascaded TAS/MRC in MIMO multiuser relay networks. IEEE Transactions on Wireless Communications, 11(10), 3829–3839.

    Article  Google Scholar 

  32. Singh, S. P., & Kumar, S. (2016). A MGF based closed form expressions for error probability and capacity over EGK fading for interference limited system. Wireless Personal Communications, 91(2), 577–593.

    Article  Google Scholar 

  33. Loo, C. (1990). Digital transmission through a land mobile satellite channel. IEEE Transactions on Communications, 38, 693–697.

    Article  Google Scholar 

  34. Stüber, G. L., & Stèuber, G. L. (1996). Principles of mobile communication (Vol. 2). Kluwer Academic.

    Book  Google Scholar 

  35. Praveen Kumar, K., Murali Krishna, P. V., & DeerghaRao, K. (2020). Coverage analysis of dynamic TDD-based downlink mmWave network with k-μ shadowed fading and BS heights. IET Communications, 14(8), 1251–1260.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pratap Singh.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Showing Steps for Getting Eq. (5) from Eq. (4)

After using Eq. (3) in Eq. (4), we get

$$ f_{{\gamma /{{\uppsi }}}} \left( {\gamma ,{{\uppsi }}} \right) = \frac{{\bar{w}}}{{\bar{\gamma }}}\frac{1}{{2\sigma ^{2} }}\left( {\frac{w}{{{{\uppsi }}d^{2} }}} \right)^{{\frac{{\mu - 1}}{2}}} e^{{ - \frac{{w + {{\uppsi }}d^{2} }}{{2d^{2} }}}} I_{{n - 1}} \left( {\frac{1}{{\sigma ^{2} }}\sqrt {w{{\uppsi }}d^{2} } } \right) $$
(A.1)

Using the relationship \(\frac{w}{\overline{w} }=\frac{\gamma }{\overline{\gamma }},\) of the parameters in Eq. (A.1), it can be written as

$$ f_{{\gamma /{{\uppsi }}}} \left( {\gamma ,{{\uppsi }}} \right) = \frac{{\bar{w}}}{{\bar{\gamma }}}\frac{1}{{2\sigma ^{2} }}\left( {\frac{{\bar{w}\gamma }}{{\bar{\gamma }}}\frac{1}{{{{\uppsi }}d^{2} }}} \right)^{{\frac{{\mu - 1}}{2}}} e^{{ - \frac{{\frac{{\bar{w}\gamma }}{{\bar{\gamma }}} + {{\uppsi }}d^{2} }}{{2\sigma ^{2} }}}} I_{{\mu - 1}} \left( {\frac{1}{{\sigma ^{2} }}\sqrt {\frac{{\bar{w}\gamma {{\uppsi }}d^{2} }}{{\bar{\gamma }}}} } \right) $$
(A.2)

Now using the relationship \(\overline{w }={d}^{2}+2{\sigma }^{2}\mu \) in Eq. (A.2) and thereafter using \(k=\frac{{d}^{2}}{2{\sigma }^{2}\mu }\) we get Eq. (A.3)

after a few mathematical manipulations

$$ f_{{\gamma /{{\uppsi }}}} \left( {\gamma ,{{\uppsi }}} \right) = \frac{{\left( \mu \right)^{{\frac{{\mu + 1}}{2}}} \left( {1 + k} \right)^{{\frac{{\mu + 1}}{2}}} }}{{e^{{{{\uppsi }}\mu k}} \bar{\gamma }}}\left( {\frac{1}{{\mu k}}} \right)^{{\frac{{\mu - 1}}{2}}} \left( {\frac{\gamma }{{\bar{\gamma }}}\frac{1}{{{\uppsi }}}} \right)^{{\frac{{\mu - 1}}{2}}} e^{{ - \mu \left( {1 + k} \right)\frac{\gamma }{{\bar{\gamma }}}}} I_{{\mu - 1}} \left( {\frac{{k2\sigma ^{2} \mu }}{{\sigma ^{2} }}\sqrt {\frac{{\left( {k + 1} \right){{\uppsi }}}}{k}\frac{\gamma }{{\bar{\gamma }}}} } \right) $$
(A.3)

After simple algebraic manipulations, we get Eq. (5)

Appendix B: PDF of k-µ/Inverse Gamma (LOS) Shadowed Fading Model

The unconditional PDF of the k-µ/inverse Gamma (LOS) shadowed fading model is obtained by averaging the conditional PDF in Eq. (5) with PDF of \(\uppsi \)

$$ f_{\gamma } \left( \gamma \right) = \mathop \smallint \limits_{0}^{\infty } f_{{\gamma /{{\uppsi }}}} \left( {\gamma ,{{\uppsi }}} \right)f_{{{\uppsi }}} \left( {{\uppsi }} \right)d{{\uppsi }} $$
(B.1)

The PDF of the inverse Gamma random variable \(\uppsi ,\)[18, Eq. (5)] is:

$$ f_{{\uppsi }} \left( {\uppsi } \right) = \frac{{\beta^{\alpha } }}{\Gamma \alpha }\frac{1}{{{\uppsi }^{\alpha + 1} }}e^{{ - \frac{\beta }{{\uppsi }}}} $$
(B.2)

where the shape parameter α and scale parameter β are positive quantities.

Substituting values from Eq. (5) to Eq. (B.2) and thereafter arranging the terms in Eq. (B.1), we get Eq. (B.3)

$$ f_{\gamma } \left( \gamma \right) = \frac{1}{2}\frac{{\mu \left( {1 + k} \right)^{{\frac{\mu + 1}{2}}} }}{{\overline{\gamma }k^{{\frac{\mu - 1}{2}}} }}\left( {\frac{\gamma }{{\overline{\gamma }}}} \right)^{{\frac{\mu - 1}{2}}} e^{{\frac{{ - \mu \left( {1 + k} \right)\gamma }}{{\overline{\gamma }}}}} \frac{{2\beta^{\alpha } }}{\Gamma \alpha }\mathop \smallint \limits_{0}^{\infty } {\uppsi }^{{ - \left( {\alpha + \frac{\mu }{2} + \frac{1}{2}} \right)}} e^{{ - {\uppsi }\mu k}} e^{{ - \left( {\frac{\beta }{{\uppsi }}} \right)}} I_{\mu - 1} \left( {2\mu \sqrt {\frac{{k\left( {1 + k} \right){\uppsi }\gamma }}{{\overline{\gamma }}}} } \right)d{\uppsi } $$
(B.3)

Using the identity \(I_{v} \left( z \right) = \mathop \sum \limits_{l = 0}^{\infty } \frac{1}{l!\Gamma v + l + 1}\left( \frac{z}{2} \right)^{v + 2l}\) and thereafter arranging the terms in Eq. (B.3), we get Eq. (B.4)

$$ f_{\gamma } \left( \gamma \right) = \mathop \sum \limits_{l = 0}^{\infty } \frac{1}{{l!\Gamma \left( {\mu + l} \right)}}\frac{1}{2}\frac{{2\beta^{\alpha } }}{\Gamma \alpha }\frac{{\mu \left( {1 + k} \right)^{{\frac{\mu + 1}{2}}} }}{{k^{{\frac{\mu - 1}{2}}} \overline{\gamma }}}\left( {\frac{\gamma }{{\overline{\gamma }}}} \right)^{{\frac{\mu - 1}{2}}} e^{{\frac{{ - \mu \left( {1 + k} \right)\gamma }}{{\overline{\gamma }}}}} \left( {\mu \sqrt {\frac{{k\left( {1 + k} \right)\gamma }}{{\overline{\gamma }}}} } \right)^{\mu - 1 + 2l} \mathop \smallint \limits_{0}^{\infty } t^{{ - \alpha - \frac{\mu }{2} - \frac{1}{2} + \frac{\mu }{2} - \frac{1}{2} + l}} e^{ - t\mu k} e^{{ - {\raise0.7ex\hbox{$\beta $} \!\mathord{\left/ {\vphantom {\beta t}}\right.\kern-0pt} \!\lower0.7ex\hbox{$t$}}}} dt $$
(B.4)

Now, applying the Meijer-G identity corresponding to exponential function \({e}^{-x}={G}^{\begin{array}{cc}1& 0\\ 0& 1\end{array}}\left(x|\begin{array}{c}-\\ 0\end{array}\right)\) in Eq. (B.4), we get Eq. (B.5) after simple algebraic manipulations,

$$ f_{\gamma } \left( \gamma \right) = \mathop \sum \limits_{l = 0}^{\infty } \frac{1}{l!\Gamma \mu + l}\frac{{\beta^{\alpha } }}{\Gamma \alpha }\frac{{\left( \gamma \right)^{\mu + l - 1} }}{{\overline{\gamma }^{\mu + l} }}e^{{\frac{{ - \mu \left( {1 + k} \right)\gamma }}{{\overline{\gamma }}}}} \left( \mu \right)^{\mu + 2l} \left( {\left( {1 + k} \right)} \right)^{\mu + l} \left( k \right)^{l} \mathop \smallint \limits_{0}^{\infty } t^{l - \alpha - 1} G^{{\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} }} \left( {\mu kt{|}\begin{array}{*{20}c} - \\ 0 \\ \end{array} } \right)G^{{\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} }} \left( {\frac{\beta }{t}{|}\begin{array}{*{20}c} - \\ 0 \\ \end{array} } \right)dt $$
(B.5)

Now applying the identity [25, Eq. (9.31.2)] and [28, Eq. (07.34.21.0011.01)] in Eq. (B.5). After a few simple algebraic manipulations we get PDF of the k-µ/inverse Gamma LOS shadowed fading model as in Eq. (6).

Appendix C: Establishing the Relationship Between the Inverse Gamma Shadowing Parameters (α, β) and (m, w)

The PDF of a Gamma random variable y parameterized in terms of (m, b) [34, Eq. (2.55)], we get:

$$ f_{Y} \left( y \right) = \frac{1}{\Gamma m}(\frac{m}{{\text{b}}})^{m} y^{m - 1} e^{{ - \frac{my}{{\text{b}}}}} $$
(C.1)

where Γ(.) denotes the Gamma function, b is an average signal power and \(m\) is an arbitrary shadowing parameter with values from 0.5 through infinity. The PDF of the inverse Gamma random variable \(\uppsi \), parameterized in terms of parameters (m, w) is obtained from PDF of the Gamma random variable y, parameterized in terms of parameters (m, b), Eq. (C.1). Therefore, introducing a change of variables \(\uppsi \) = 1/y and (w = b−1) in the expression Eq. (C.1), we get:

$${f}_{\uppsi }\left(\uppsi \right)=\left|{f}_{Y}\left(y\right)\frac{dy}{d\uppsi }\right|\mathrm{at }(\mathrm{y }=\frac{1}{\uppsi })$$
(C.2)

Substituting Eq. (C.1) in Eq. (C.2),

$$ f_{{\uppsi }} \left( {\uppsi } \right) = \left| {\frac{1}{\Gamma m}(\frac{m}{b})^{m} y^{m - 1} e^{{ - \frac{my}{b}}} \left( { - \frac{1}{{{\uppsi }^{2} }}} \right)} \right|{\text{at }}\left( {{\text{y }} = \frac{1}{{\uppsi }}} \right) $$
(C.3)

Using the relation (w = b−1) in Eq. (C.3), it can be written as

$$ f_{{\uppsi }} \left( {\uppsi } \right) = \frac{1}{\Gamma m}\left( {mw} \right)^{m} \left( {\frac{1}{{\uppsi }}} \right)^{m - 1} e^{{ - mw)\frac{1}{{\uppsi }}}} \left( {\frac{1}{{{\uppsi }^{2} }}} \right) $$
(C.4)

After arranging the terms in Eq. (C.4), we get Eq. (C.5)

$$ f_{{\uppsi }} \left( {\uppsi } \right) = \frac{{\left( {mw} \right)^{{m_{s} }} }}{\Gamma m}\frac{1}{{{\uppsi }^{m + 1} }}e^{{ - \frac{mw)}{{\uppsi }}}} $$
(C.5)

Now if we compare Eq. (C.5) with Eq. (B.2), the PDF of the inverse Gamma random variable \(\uppsi \), \({f}_{\uppsi }\left(\uppsi \right)\) parameterized in terms of (α, β), then therelationship between the inverse Gamma shadowing parameters (α, β) and (m, w), comes out as (shape parameter α = m and scale parameter β = mw).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadi, S., Singh, S.P., Kumar, S. et al. Various Expressions over Novel k-µ/Inverse Gamma LOS Shadowed Fading. Wireless Pers Commun 132, 1863–1886 (2023). https://doi.org/10.1007/s11277-023-10684-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10684-x

Keywords

Navigation