Log in

5G-enabled V2X communications for vulnerable road users safety applications: a review

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Intelligent Transportation System (ITS) is continuously evolving alongside communication technologies and autonomous driving, giving way to new applications and services. Considering the significant rise in traffic casualties, protecting vulnerable road users (VRU), such as pedestrians, cyclists, motorcycles, animals, etc., has become ever more critical. That said, technological advances alone can not meet the requirements of such crucial applications. Therefore, combining them with architectural revolutions, particularly cloud, fog, and edge computing, is essential. In this review, we scrutinize the VRU safety application with regard to technological evolution. This review establishes the foundations for designing resilient, more reliable, end-to-end VRU protection services. It illustrates the possibility of combining the performance of different technologies through exploiting 5G architectural advantages (function placement, direct/indirect communication, etc.) for the intended application. In the context of 5G architecture, collision avoidance systems consider network and application-related challenges and solutions. This survey provides standardization, studies, and project efforts related to the use case and considers the different types of messages in the V2VRU communication-based safety application. We investigate how adapting the application parameters to the network state and devices’ available resources can use network resources efficiently and provide reliable services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olszewski, P., Szagała, P., Rabczenko, D., & Zielińska, A. (2019). Investigating safety of vulnerable road users in selected eu countries. Journal of Safety Research, 68, 49–57. https://doi.org/10.1016/j.jsr.2018.12.001.

    Article  Google Scholar 

  2. World Health Organization WHO et al (2018). Global status report on road safety 2018: Summary. Technical report, World Health Organization.

  3. Oyono, Y., Gjerde, H., Kelley-Baker, T., Asongalem, E. A., Nteungue, B. A., Kouomogne, T., et al. (2022). Prevalence of alcohol among drivers, riders and pedestrians injured in road traffic crashes in cameroon: A cross-sectional study. International Journal of Injury Control and Safety Promotion. https://doi.org/10.1080/17457300.2022.2030365.

    Article  Google Scholar 

  4. Yannis, G., Nikolaou, D., Laiou, A., Stürmer, Y. A., Buttler, I., & Jankowska-Karpa, D. (2020). Vulnerable road users: Cross-cultural perspectives on performance and attitudes. IATSS Research, 44(3), 220–229. https://doi.org/10.1016/j.iatssr.2020.08.006.

    Article  Google Scholar 

  5. El Hamdani, S., Benamar, N., & Younis, M. (2020). Pedestrian support in intelligent transportation systems: Challenges, solutions and open issues. Transportation Research Part C: Emerging Technologies, 121, 102856. https://doi.org/10.1016/j.trc.2020.102856.

    Article  Google Scholar 

  6. Holländer, K., Colley, M., Rukzio, E., & Butz, A. (2021). A taxonomy of vulnerable road users for hci based on a systematic literature review. In Proceedings of the 2021 CHI conference on human factors in computing systems, (pp. 1–13).

  7. Sewalkar, P., & Seitz, J. (2019). Vehicle-to-pedestrian communication for vulnerable road users: Survey, design considerations, and challenges. Sensors. https://doi.org/10.3390/s19020358.

    Article  Google Scholar 

  8. Dasanayaka, N., Hasan, K.F., Wang, C., & Feng Y. (2020). Enhancing vulnerable road user safety: A survey of existing practices and consideration for using mobile devices for v2x connections. ar**v preprint ar**v:2010.15502.

  9. Hasan, R., & Hasan, R. (2022). Pedestrian safety using the internet of things and sensors: Issues, challenges, and open problems. Future Generation Computer Systems, 134, 187–203. https://doi.org/10.1016/j.future.2022.03.036.

    Article  Google Scholar 

  10. **g, P., Huang, W., & Chen, L. (2017). Car-to-pedestrian communication safety system based on the vehicular ad-hoc network environment: A systematic review. Information. https://doi.org/10.3390/info8040127.

    Article  Google Scholar 

  11. Alfakeeh, A. S., Al-Bayatti, A. H., Ferrag, M. A., Vourgidis, I., & Maglaras, L. (2020). Use of smartphones for ensuring vulnerable road user safety through path prediction and early warning: An in-depth review of capabilities, limitations and their applications in cooperative intelligent transport systems. Sensors. https://doi.org/10.3390/s20040997.

    Article  Google Scholar 

  12. Rasouli, A., & Tsotsos, J. K. (2019). Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Transactions on Intelligent Transportation Systems, 21(3), 900–918.

    Article  Google Scholar 

  13. Muslim, H., & Antona-Makoshi, J. (2022). A review of vehicle-to-vulnerable road user collisions on limited-access highways to support the development of automated vehicle safety assessments. Safety. https://doi.org/10.3390/safety8020026.

    Article  Google Scholar 

  14. ETSI. Intelligent transport system (its); vulnerable road users (vru) awareness; part 2: Functional architecture and requirements definition; release 2. Standard, (May 2020).

  15. SAE Surface Vehicle Standard (2009). Dedicated short range communications (dsrc) message set dictionary. SAE International, November.

  16. Menarini, M., Masini, B. M., Zanella, A., Bazzi, A., & Cecchini, G. (2019). Survey and perspectives of vehicular wi-fi versus sidelink cellular-v2x in the 5g era. Future Internet. https://doi.org/10.3390/fi11060122.

    Article  Google Scholar 

  17. ETSI EN 302 663 V1.3.1. Final draft etsi en 302 663 v1.3.1 intelligent transport systems (its); its-g5 access layer specification for intelligent transport systems operating in the 5 ghz frequency band. Technical report, (2019-10).

  18. Mannoni, V., Berg, V., Sesia, S., & Perraud, E. (2019). A comparison of the v2x communication systems: Its-g5 and c-v2x. In 2019 IEEE 89th vehicular technology conference (VTC2019-Spring), (pp. 1–5). https://doi.org/10.1109/VTCSpring.2019.8746562.

  19. 3rd Generation Partnership Project (3GPP) (2018). Study on evaluation methodology of new vehicle-to-everything (v2x) use cases for lte and nr, 3gpp tr 37.885. https://www.3gpp.org/.

  20. Fehrenbach, T., Datta, R., Göktepe, B., Wirth, T., & Hellge C. (2018). Urllc services in 5g low latency enhancements for lte. In IEEE 88th vehicular technology conference (VTC-Fall), pp. 1–6. https://doi.org/10.1109/VTCFall.2018.8690663.

  21. Gundlach, Nokia Germany M. (March 2019). Use cases for 3gpp based v2x and combined solutions, 10th etsi its workshop. Technical report, 4-6.

  22. 5GAA Automotive Association. Vulnerable road user protection. White paper, 24.08.2020.

  23. Mussot, L., Kousaridas, A., Spapis, P., Mahlouji, M., Mahmoodi, T., Condoluci, M., & Gallo, L. (2019). 5g v2x system-level architecture of 5gcar project. Future Internet. https://doi.org/10.3390/fi11100217.

    Article  Google Scholar 

  24. Abbas, T., Barciela, A. E. F., Boban, M., Cordes, K., Fallgren, M., Gallo, L., et al. (2020). On the needs and requirements arising from connected and automated driving. Journal of Sensor and Actuator Networks. https://doi.org/10.3390/jsan9020024.

    Article  Google Scholar 

  25. Fernandez, A. E., & Fallgren, M. (2017). 5gcar scenarios, use cases, requirements and kpis (p. 2). Rep. D: Fifth Generation Communication Automotive Research and innovation, Tech.

  26. Ghorai, P., Eskandarian, A., Kim, Y.-K., & Mehr, G. (2022). State estimation and motion prediction of vehicles and vulnerable road users for cooperative autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, pp. 1–20. https://doi.org/10.1109/TITS.2022.3160932.

  27. Allen, T., Newstead, S., Lenné, M. G., McClure, R., Hillard, P., Symmons, M., & Day, L. (2017). Contributing factors to motorcycle injury crashes in victoria, australia. Transportation Research Part F: Traffic Psychology and Behaviour, 45, 157–168. https://doi.org/10.1016/j.trf.2016.11.003.

    Article  Google Scholar 

  28. Ulrich, S. (2018) Predicting Safety Benefits of Automated Emergency Braking at Intersections-Virtual simulations based on real-world accident data. Chalmers University of Technology.

  29. de Miguel, M., Fuchshuber, D., Hussein, A., & Olaverri-Monreal, C. (2019). Perceived pedestrian safety: Public interaction with driverless vehicles. In 2019 IEEE intelligent vehicles symposium (IV), (pp. 90–95). https://doi.org/10.1109/IVS.2019.8814145.

  30. Rasch, A., Panero, G., Boda, C.-N., & Marco, D. (2020). How do drivers overtake pedestrians? evidence from field test and naturalistic driving data. Accident Analysis & Prevention, 139, 105494. https://doi.org/10.1016/j.aap.2020.105494.

    Article  Google Scholar 

  31. Tabone, W., de Winter, J., Ackermann, C., Bärgman, J., Baumann, M., Deb, S., et al. (2021). Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transportation Research Interdisciplinary Perspectives, 9, 100293. https://doi.org/10.1016/j.trip.2020.100293.

    Article  Google Scholar 

  32. Bella, F., & Silvestri, M. (2021). Vehicle-pedestrian interactions into and outside of crosswalks: Effects of driver assistance systems. Transport, 36(2), 98–109.

    Article  Google Scholar 

  33. Wang, J., Parajuli, S., Cherry, C. R., McDonald, N. C., & Lyons, T. (2022). Vulnerable road user safety and freight vehicles: A case study in north carolina and tennessee. Transportation Research Interdisciplinary Perspectives, 15, 100650. https://doi.org/10.1016/j.trip.2022.100650.

    Article  Google Scholar 

  34. Coleman, Heidi, Mizenko, Krista, et al. (2018). Pedestrian and bicyclist data analysis [traffic safety facts]: Research note. Technical report, United States: National Highway Traffic Safety Administration.

  35. Wang, J., & Cicchino, J. B. (2020). Fatal pedestrian crashes on interstates and other freeways in the united states. Journal of Safety Research, 74, 1–7. https://doi.org/10.1016/j.jsr.2020.04.009.

    Article  Google Scholar 

  36. IHS-HLDI (2022). Fatality facts 2020. https://www.iihs.org/topics/fatality-statistics/detail/pedestrians.

  37. International Transport Forum Japan (2021). Japan: Road safety country profile. https://www.itf-oecd.org/sites/default/files/japan-road-safety.pdf.

  38. Macek, K. (2022). Pedestrian traffic fatalities by state: 2021 preliminary data.

  39. NHTSA. Crash avoidance needs and countermeasure profiles for safety applications based on light-vehicle-to-pedestrian communications. https://one.nhtsa.gov/DOT/NHTSA/NVS/Crash%20Avoidance/Technical%20Publications/2016/812312_V2PPedestrianReport.pdf.

  40. Euro, N. C. A. P. (2017). European new car assessment programme (euro ncap)-test protocol-aeb vru systems. Technical Report: Technical report.

  41. Cummings, M., Huang, L., Clamann, M., Li, S., et al. (2019). Development and evaluation of vehicle to pedestrian (v2p) safety interventions. Collaborative Sciences Center for Road Safety: Technical report.

  42. Gelbal, S. Y., Aksun-Guvenc, B., & Guvenc, L. (2020). Collision avoidance of low speed autonomous shuttles with pedestrians. International Journal of Automotive Technology, 21(4), 903–917.

    Article  Google Scholar 

  43. Brown, Laurie, Morris, Andrew, Thomas, Pete, Ekambaram, Karthikeyan, Margaritis, Dimitris, Davidse, Ragnhild, et al. (2021). Investigation of accidents involving powered two wheelers and bicycles–A european in-depth study. Journal of Safety Research, 76, 135–145. https://doi.org/10.1016/j.jsr.2020.12.015.

    Article  Google Scholar 

  44. Tan, Zheng**, Che, Yaoyue, **ao, Lingyun, Hu, Wenhao, Li, **fei, & Xu, **. (2021). Research of fatal car-to-pedestrian precrash scenarios for the testing of the active safety system in china. Accident Analysis & Prevention, 150, 105857. https://doi.org/10.1016/j.aap.2020.105857.

    Article  Google Scholar 

  45. Aparicio, A., Cieslik, I., Stoll, J., Kunert, M., Flohr, F., Arbitmann, M., Wimmer, T., Bräutigan, J., & Gavrila, D. (2017). Advancing active safety towards the protection of vulnerable road users: the prospect project. In 25th international technical conference on the enhanced safety of vehicles (ESV) National Highway Traffic Safety Administration.

  46. Cankar, M., Stanovnik, S., & Landaluce, H. (2018). Transportation ecosystem framework in fog to cloud environment. In IEEE/ACM international conference on utility and cloud computing companion (UCC companion), pp. 266–271. https://doi.org/10.1109/UCC-Companion.2018.00066.

  47. Fraboni, F., Puchades, V. Marín., De Angelis, M., Pietrantoni, L., & Prati, G. (2018). Red-light running behavior of cyclists in Italy: An observational study. Accident Analysis & Prevention, 120, 219–232. https://doi.org/10.1016/j.aap.2018.08.013.

    Article  Google Scholar 

  48. Gimm, K., Knake-Langhorst, S., & Bottazzi, M. (2018). Increasing cycling safety by an adaptively triggered road instrumented warning element in eu project xcycle. In Transport Research Arena TRA2018. URL https://elib.dlr.de/111997/.

  49. Barmpounakis, S., Tsiatsios, G., Papadakis, M., Mitsianis, E., Koursioumpas, N., & Alonistioti, N. (2020). Collision avoidance in 5g using mec and nfv: The vulnerable road user safety use case. Computer Networks, 172, 107150. https://doi.org/10.1016/j.comnet.2020.107150.

    Article  Google Scholar 

  50. Malinverno, M., Avino, G., Casetti, C., Chiasserini, C. F., Malandrino, F., & Scarpina, S. (2020). Edge-based collision avoidance for vehicles and vulnerable users: An architecture based on mec. IEEE Vehicular Technology Magazine, 15(1), 27–35. https://doi.org/10.1109/MVT.2019.2953770.

    Article  Google Scholar 

  51. Malinverno, M., Mangues-Bafalluy, J., Casetti, C. E., Chiasserini, C. F., Requena-Esteso, M., & Baranda, J. (2020). An edge-based framework for enhanced road safety of connected cars. IEEE Access, 8, 58018–58031. https://doi.org/10.1109/ACCESS.2020.2980902.

    Article  Google Scholar 

  52. Malinverno, M., Avino, G., Casetti, C., Chiasserini, C.F., Malandrino, F., & Scarpina, S. (2018). Performance analysis of c-v2i-based automotive collision avoidance. In IEEE 19th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), (pp. 1–9). https://doi.org/10.1109/WoWMoM.2018.8449772.

  53. Kunashko, A., Ruß, T., & **e, F. Predicting and preventing collisions of vulnerable road users and busses using v2x communication.

  54. Casademont, J., Calveras, A., Quiñones, D., Navarro, M., Arribas, J., & Catalan-Cid, M. (2019). Cooperative-intelligent transport systems for vulnerable road users safety. In 7th International conference on future internet of things and cloud (FiCloud), (pp. 141–146). https://doi.org/10.1109/FiCloud.2019.00027.

  55. 5G-ACIA. 5g for connected industries and automation. Technical report, (2018).

  56. Collaborative sciences center for road safety. https://www.roadsafety.unc.edu/research/projects/#current_research.

  57. Meng, L., & Faouzi, B. (2020). Potential 5g applications for connected vehicles: Use cases, opportunities and challenges. In Proceedings of The 27th ITS world congress. Intelligent Transport Systems America (ITSA).

  58. Bundesministerium für Digitales und Verkehr. Erhöhte Verkehrssicherheit mittels Intelligenter Detektionstechnologien [Increased road safety using intelligent detection technologies]- VIDETEC . https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/videtec.html.

  59. Vesselinova, N., Pubill, D., Ramantas, K., Efthymiopoulou, M., Jimeno, E., Gomez, G., Kosmatos, E., Trichias, K., Mpatziakas, A., Sinanis, A., Drsou, A., Christofi, Loizos, Chen, T., Scholliers, J., Roosipuu, P., Alam, M.M., & Verikoukis, C. The 5g route to connected and automated mobility: the 5g-routes project.

  60. Qian, X., Jaller, M., **ao, R. I., & Chen, S., et al. (2022). Analysis of intelligent vehicle technologies to improve vulnerable road users safety at signalized intersections. National Center for Sustainable Transportation (NCST)(UTC): Technical report.

  61. SAKURA RESEARCH PROJECT. Safety assurance kudos for reliable autonomous vehicles.

  62. 5G OPEN ROAD. https://www.cerema.fr/fr/actualites/5g-open-road-revolution-route, (2022).

  63. Santa, J., Pereñíguez, F., Moragón, A., & Skarmeta, A. F. (2014). Experimental evaluation of cam and denm messaging services in vehicular communications. Transportation Research Part C: Emerging Technologies, 46, 98–120. https://doi.org/10.1016/j.trc.2014.05.006.

    Article  Google Scholar 

  64. Kim, I., Yoo, H., Young-Hyun, E., Cho, S., & Jeon, B. (2018). An integrated communication message framework of inter-vehicles for connected vehicles using mobile virtual fence(mvf). International Journal of Engineering and Technology, 7(3.33), 102–105. https://doi.org/10.14419/ijet.v7i3.33.18584.

    Article  Google Scholar 

  65. ITS ETSI. Intelligent transport system (its); vehicular communications; basic set of applications; analysis of the collective-perception service (cps). Draft TR 103 562 V0. 0.15, (2019).

  66. Thandavarayan, G., Sepulcre, M., & Gozalvez, J. (2020). Cooperative perception for connected and automated vehicles: Evaluation and impact of congestion control. IEEE Access, 8, 197665–197683. https://doi.org/10.1109/ACCESS.2020.3035119.

    Article  Google Scholar 

  67. Napolitano, A., Cecchetti, G., Giannone, F., Ruscelli, A.L., Civerchia, F., Kondepu, K., Valcarenghi, L., & Castoldi, P. (2019). Implementation of a mec-based vulnerable road user warning system. In 2019 AEIT International conference of electrical and electronic technologies for automotive (AEIT AUTOMOTIVE), (pp. 1–6). https://doi.org/10.23919/EETA.2019.8804497.

  68. Nevigato, N., Tropea, M., & De Rango, F. (2020). Collision avoidance proposal in a mec based vanet environment. In 2020 IEEE/ACM 24th international symposium on distributed simulation and real time applications (DS-RT), (pp. 1–7). IEEE.

  69. Morold, M., Nguyen, Q. H., Bachmann, M., David, K., & Dressler, F. (2020). Requirements on delay of vru context detection for cooperative collision avoidance. In IEEE 92nd vehicular technology conference (VTC2020-Fall), (pp. 1–5). https://doi.org/10.1109/VTC2020-Fall49728.2020.9348627.

  70. Zoghlami, C., Kacimi, R., & Dhaou, R. (2022a). A study on dynamic collection of cooperative awareness messages in v2x safety applications. In 2022 IEEE 19th annual consumer communications networking conference (CCNC), (pp. 723–724). https://doi.org/10.1109/CCNC49033.2022.9700720.

  71. Won, M., Shrestha, A., Park, K.-J., & Eun, Y. (2020). Safercross: Enhancing pedestrian safety using embedded sensors of smartphone. Ieee Access, 8, 49657–49670.

    Article  Google Scholar 

  72. Soto, Ignacio, Jimenez, Felipe, Calderon, Maria, Naranjo, Jose E., & Anaya, Jose J. (2019). Reducing unnecessary alerts in pedestrian protection systems based on p2v communications. Electronics. https://doi.org/10.3390/electronics8030360.

    Article  Google Scholar 

  73. Yakusheva, N., Proletarsky, A., & Basarab, M. (2018). Pedestrian-vehicle collision avoidance strategy for nlos conditions. In 2018 26th Telecommunications forum (TELFOR) (pp. 1–4). https://doi.org/10.1109/TELFOR.2018.8612086.

  74. Zadeh, R. B., Ghatee, M., & Eftekhari, H. R. (2018). Three-phases smartphone-based warning system to protect vulnerable road users under fuzzy conditions. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2086–2098. https://doi.org/10.1109/TITS.2017.2743709.

    Article  Google Scholar 

  75. Bagheri, M., Siekkinen, M., & Nurminen, J. K. (2016). Cloud-based pedestrian road-safety with situation-adaptive energy-efficient communication. IEEE Intelligent Transportation Systems Magazine, 8(3), 45–62. https://doi.org/10.1109/MITS.2016.2573338.

    Article  Google Scholar 

  76. Tahmasbi-Sarvestani, A., Nourkhiz Mahjoub, H., Fallah, Y. P., Moradi-Pari, E., & Abuchaar, O. (2017). Implementation and evaluation of a cooperative vehicle-to-pedestrian safety application. IEEE Intelligent Transportation Systems Magazine, 9(4), 62–75. https://doi.org/10.1109/MITS.2017.2743201.

    Article  Google Scholar 

  77. Bighashdel, A., & Dubbelman, G. (2019). A survey on path prediction techniques for vulnerable road users: From traditional to deep-learning approaches. In 2019 IEEE intelligent transportation systems conference (ITSC), pp. 1039–1046. https://doi.org/10.1109/ITSC.2019.8917053.

  78. Parada, R., Aguilar, A., Alonso-Zarate, J., & Vázquez-Gallego, F. (2021). Machine learning-based trajectory prediction for vru collision avoidance in v2x environments. In 2021 IEEE global communications conference (GLOBECOM), pp. 1–6. https://doi.org/10.1109/GLOBECOM46510.2021.9685520.

  79. Mozaffari, S., Al-Jarrah, O. Y., Dianati, M., Jennings, P., & Mouzakitis, A. (2020). Deep learning-based vehicle behavior prediction for autonomous driving applications: A review. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3012034.

    Article  Google Scholar 

  80. Wang, P., Zhou, M., & Ding, Z. (2021). A vru collision warning system with kalman-filter-based positioning accuracy improvement. In 2021 IEEE international conference on information communication and software engineering (ICICSE), (pp. 191–198). https://doi.org/10.1109/ICICSE52190.2021.9404116.

  81. Zhang, L., Yuan, K., Chu, H., Huang, Y., Ding, H., Yuan, J., & Chen, H. (2022). Pedestrian collision risk assessment based on state estimation and motion prediction. IEEE Transactions on Vehicular Technology, 71(1), 98–111. https://doi.org/10.1109/TVT.2021.3127008.

    Article  Google Scholar 

  82. Ju, C., Wang, Z., Long, C., Zhang, X., & Chang, D. E. (2020). Interaction-aware kalman neural networks for trajectory prediction. In IEEE intelligent vehicles symposium (IV), (pp. 1793–1800). https://doi.org/10.1109/IV47402.2020.9304764

  83. Severino, A., Arena, F., & Pau, G. (2020). V2x communications applied to safety of pedestrians and vehicles. Journal of Sensor and Actuator Networks. https://doi.org/10.3390/jsan9010003.

    Article  Google Scholar 

  84. Li, H. (2021). A novel solution for uu interface based c-v2x. ar**v preprint ar**v:2109.05684

  85. Watanabe, Y., & Shoji, Y. (2019). A vehicle-approach alert system based on the neighbor discovery protocol for pedestrian safety. In 2019 Global IoT Summit (GIoTS), (pp. 1–6). https://doi.org/10.1109/GIOTS.2019.8766405.

  86. statista. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.

  87. Li, X., Lin, K.-Y., Meng, M., Li, X., Li, L., Hong, Y., & Chen, J. (2022). A survey of adas perceptions with development in china. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3149763.

    Article  Google Scholar 

  88. Nguyen, Q. H., Morold, M., David, K., & Dressler, F. (2020). Car-to-pedestrian communication with mec-support for adaptive safety of vulnerable road users. Computer Communications, 150, 83–93. https://doi.org/10.1016/j.comcom.2019.10.033.

    Article  Google Scholar 

  89. Emara, M., Filippou, M.C., & Sabella, D. (2018). Mec-assisted end-to-end latency evaluations for c-v2x communications. In European conference on networks and communications (EuCNC), (pp. 1–9), https://doi.org/10.1109/EuCNC.2018.8442825.

  90. Nguyen, Q.H., Morold, M., David, K., & Dressler, F. (2019). Adaptive safety context information for vulnerable road users with mec support. In 15th annual conference on wireless on-demand network systems and services (WONS), (pp. 28–35). https://doi.org/10.23919/WONS.2019.8795475.

  91. Ye, L., & Yamamoto, T. (2019). Evaluating the impact of connected and autonomous vehicles on traffic safety. Physica A: Statistical Mechanics and its Applications, 526, 121009. https://doi.org/10.1016/j.physa.2019.04.245.

    Article  Google Scholar 

  92. Ye, L., & Yamamoto, T. (2018). Modeling connected and autonomous vehicles in heterogeneous traffic flow. Physica A: Statistical Mechanics and its Applications, 490, 269–277. https://doi.org/10.1016/j.physa.2017.08.015.

    Article  MathSciNet  Google Scholar 

  93. Bréhon-Grataloup, Lucas, Kacimi, Rahim, & Beylot, André-Luc. (2022). Mobile edge computing for v2x architectures and applications: A survey. Computer Networks, 206, 108797. https://doi.org/10.1016/j.comnet.2022.108797.

    Article  Google Scholar 

  94. Perna, G., Rosmaninho, R., Sampaio, H., Rito, P., Luís, M., & Sargento, S. (2021). On the performance of 5g for cloud- and edge-based emergency services in smart cities. In 2021 12th international conference on network of the future (NoF), (pp. 1–5). https://doi.org/10.1109/NoF52522.2021.9609822.

  95. Alemneh, E., Senouci, S., & Brunet, P. (2017). Pv-alert: A fog-based architecture for safeguarding vulnerable road users. In Global information infrastructure and networking symposium (GIIS), (pp. 9–15). https://doi.org/10.1109/GIIS.2017.8169804.

  96. ETSI GS MEC-IEG 004 V1.1.1. Mobile-edge computing (mec);service scenarios. Technical report, 2015-11.

  97. Mei, J., Wang, X., & Zheng, K. (2019). Intelligent network slicing for v2x services toward 5g. IEEE Network, 33(6), 196–204. https://doi.org/10.1109/MNET.001.1800528.

    Article  Google Scholar 

  98. Wijethilaka, S., & Liyanage, M. (2021). Survey on network slicing for internet of things realization in 5g networks. IEEE Communications Surveys Tutorials, 23(2), 957–994. https://doi.org/10.1109/COMST.2021.3067807.

    Article  Google Scholar 

  99. Ge, X. (2019). Ultra-reliable low-latency communications in autonomous vehicular networks. IEEE Transactions on Vehicular Technology, 68(5), 5005–5016. https://doi.org/10.1109/TVT.2019.2903793.

    Article  Google Scholar 

  100. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6g networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61. https://doi.org/10.1109/MCOM.001.1900411.

    Article  Google Scholar 

  101. Gonzalez-Martín, M., Sepulcre, M., Molina-Masegosa, R., & Gozalvez, J. (2018). Analytical models of the performance of c-v2x mode 4 vehicular communications. IEEE Transactions on Vehicular Technology, 68(2), 1155–1166.

    Article  Google Scholar 

  102. Molina-Masegosa, R., & Gozalvez, J. (2017). Lte-v for sidelink 5g v2x vehicular communications: A new 5g technology for short-range vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 12(4), 30–39. https://doi.org/10.1109/MVT.2017.2752798.

    Article  Google Scholar 

  103. Cecchini, G., Bazzi, A., Masini, B.M., & Zanella, A. (2017). Performance comparison between ieee 802.11p and lte-v2v in-coverage and out-of-coverage for cooperative awareness. In IEEE Vehicular Networking Conference (VNC), (pp. 109–114),. https://doi.org/10.1109/VNC.2017.8275637.

  104. Molinaro, A., Berthet, A. O., Masini, B. M., Bazzi, A., Campolo, C., & Zanella, A. (2020). On wireless blind spots in the c-v2x sidelink. IEEE Transactions on Vehicular Technology, 69(8), 9239–9243.

    Article  Google Scholar 

  105. Romeo, F., Bazzi, A., Campolo, C., Molinaro, A., & Berthet, A.O. (2019). Full duplex-aided sensing and scheduling in cellular-v2x mode 4. In Proceedings of the 1st ACM MobiHoc workshop on technologies, models, and protocols for cooperative connected cars, (pp. 19–24).

  106. Association et al. G.A. (2017a). An assessment of lte-v2x (pc5) and 802.11 p direct communications technologies for improved road safety in the eu. 5G Automotive Association, Tech. Rep..

  107. 5G Automotive Association et al (2017b). An assessment of lte-v2x (pc5) and 802.11 p direct communications technologies for improved road safety in the eu. 5G Automot. Assoc., Munich, Germany, 5GAA White Paper,.

  108. Gelbal, S. Y., Arslan, S., Wang, H., Aksun-Guvenc, B., & Guvenc, L. (2017). Elastic band based pedestrian collision avoidance using v2x communication. In 2017 IEEE intelligent vehicles symposium (IV), (pp. 270–276). IEEE.

  109. Pranav, K., & Manikandan, J. (2020). Design and evaluation of a real-time pedestrian detection system for autonomous vehicles. In Zooming Innovation in Consumer Technologies Conference (ZINC), (pp. 155–159). https://doi.org/10.1109/ZINC50678.2020.9161768.

  110. Zhu, Z., Hu, Z., Dai, W., Chen, H., & Lv, Z. (2022). Deep learning for autonomous vehicle and pedestrian interaction safety. Safety Science, 145, 105479. https://doi.org/10.1016/j.ssci.2021.105479.

    Article  Google Scholar 

  111. Zhou, Z., Yun-long, P., & Cai, Y. (2020). Vision-based approach for predicting the probability of vehicle-pedestrian collisions at intersections. IET Intelligent Transport Systems, 14, 1447–1455.

    Article  Google Scholar 

  112. Matsuo, Kojiro, Chigai, Naoki, Chattha, Moazam Irshad, & Sugiki, Nao. (2022). Vulnerable road user safety evaluation using probe vehicle data with collision warning information. Accident Analysis & Prevention, 165, 106528. https://doi.org/10.1016/j.aap.2021.106528.

    Article  Google Scholar 

  113. Ferranti, L., Brito, B., Pool, E., Zheng, Y., Ensing, R.M., Happee, R., Shyrokau, B., Kooij, J.F.P., Alonso-Mora, J. & Gavrila, D.M. (2019). Safevru: A research platform for the interaction of self-driving vehicles with vulnerable road users. In IEEE intelligent vehicles symposium (IV), (pp. 1660–1666). https://doi.org/10.1109/IVS.2019.8813899.

  114. Liu, Z., Pu, L., Meng, Z., Yang, X., Zhu, K., & Zhang, L. (2015). Pofs: A novel pedestrian-oriented forewarning system for vulnerable pedestrian safety. In 2015 international conference on connected vehicles and expo (ICCVE), (pp. 100–105). https://doi.org/10.1109/ICCVE.2015.63.

  115. Merdrignac, P., Shagdar, O., & Nashashibi, F. (2017). Fusion of perception and v2p communication systems for the safety of vulnerable road users. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1740–1751. https://doi.org/10.1109/TITS.2016.2627014.

    Article  Google Scholar 

  116. Lee, H., Yang, J., & Moessner, K. (2020). Implementation of a collision avoidance system to assist safe driving based on data fusion in vehicular networks. In International conference on information and communication technology convergence (ICTC), (pp. 795–800). https://doi.org/10.1109/ICTC49870.2020.9289528.

  117. Jahn, A., Morold, M., & David, K. (2018). 5g based collision avoidance—benefit from unobtrusive activities. In European conference on networks and communications (EuCNC), (pp. 1–356). https://doi.org/10.1109/EuCNC.2018.8442711.

  118. Sabri, K., Toufik, A., & Mohamed, M. (2021). Edge-based safety intersection assistance architecture for connected vehicles. In 2021 International wireless communications and mobile computing (IWCMC), (pp. 272–277). https://doi.org/10.1109/IWCMC51323.2021.9498980.

  119. Li, F., Zhang, R., & You, F. (2017). Fast pedestrian detection and dynamic tracking for intelligent vehicles within v2v cooperative environment. IET Image Processing, 11(10), 833–840.

    Article  Google Scholar 

  120. Peyret, F., & Gilliéron, P. Y. (2017). Cost tu1302-sappart handbook: Assessment of positioning performance in its applications. IFSTTAR: Technical report.

  121. Liu, Z., Lee, H., Khyam, M. O., He, J., Pesch, D. Moessner, K. & Poor, H. V. (2020). 6G for vehicle-to-everything (v2x) communications: Enabling technologies, challenges, and opportunities. ar**v preprint ar**v:2012.07753.

  122. Katz, M., Pirinen, P., & Posti, H. (2019). Towards 6g: Getting ready for the next decade. In 16th international symposium on wireless communication systems (ISWCS), (pp. 714–718). https://doi.org/10.1109/ISWCS.2019.8877155.

  123. Bajpai, A., & Balodi, A. (2020). Role of 6g networks: Use cases and research directions. In IEEE Bangalore humanitarian technology conference (B-HTC), (pp. 1–5). https://doi.org/10.1109/B-HTC50970.2020.9298017.

  124. Abdennour, R., Ahmed, T., & Mosbah, M. (2021). End-to-end network slicing for its-g5 vehicular communications. In 2021 international wireless communications and mobile computing (IWCMC), (pp. 266–271). https://doi.org/10.1109/IWCMC51323.2021.9498827.

  125. Hajjar, M., Aldabbagh, G., Dimitriou, N., & Win, M. Z. (2017). Hybrid clustering scheme for relaying in multi-cell lte high user density networks. IEEE Access, 5, 4431–4438. https://doi.org/10.1109/ACCESS.2016.2627527.

    Article  Google Scholar 

  126. Sewalkar, P., & Seitz, J. (2020). Mc-coco4v2p: Multi-channel clustering-based congestion control for vehicle-to-pedestrian communication. IEEE Transactions on Intelligent Vehicles. https://doi.org/10.1109/TIV.2020.3046694.

    Article  Google Scholar 

  127. Zoghlami, C., Kacimi, R., & Dhaou, R. (2022b). Dynamics of Cooperative and Vulnerable Awareness Messages in V2X Safety Applications. In International wireless communications and mobile computing conference (IWCMC 2022), Dubrovnik, Croatia. IEEE: Institute of electrical and electronics engineers and IEEE Croatia Section. https://hal.archives-ouvertes.fr/hal-03625482.

  128. Delooz, Q., & Festag, A. (2019). Network load adaptation for collective perception in v2x communications. In IEEE International conference on connected vehicles and expo (ICCVE), (pp. 1–6). https://doi.org/10.1109/ICCVE45908.2019.8964988.

  129. Sewalkar, P., Krug, S., & Seitz, J. (2017). Towards 802.11p-based vehicle-to-pedestrian communication for crash prevention systems. In 2017 9th International congress on ultra modern telecommunications and control systems and workshops (ICUMT), (pp. 404–409). https://doi.org/10.1109/ICUMT.2017.8255154.

  130. Shala, M., Sewalkar, P., & Seitz, J. (2020). On-demand quality-of-service for crucial vehicle-to-pedestrian communication. In 2020 16th international conference on wireless and mobile computing, networking and communications (WiMob), (pp. 56–61). https://doi.org/10.1109/WiMob50308.2020.9253416.

  131. Segata, M., Vijeikis, R., & Cigno, R.L. (2017). Communication-based collision avoidance between vulnerable road users and cars. In IEEE conference on computer communications workshops (INFOCOM WKSHPS), (pp. 565–570). https://doi.org/10.1109/INFCOMW.2017.8116439.

  132. Bachmann, M., Morold, M., & David, K. (2017). Improving smartphone based collision avoidance by using pedestrian context information. In IEEE International conference on pervasive computing and communications workshops (PerCom Workshops), (pp. 2–5). https://doi.org/10.1109/PERCOMW.2017.7917507.

  133. Palacio, C., & Gamess, E. (2021). Toward a collision avoidance system based on the integration of technologies. In Proceedings of the 2021 ACM southeast conference, ACM SE ’21, (pp. 214–218), New York, NY, USA. Association for Computing Machinery. ISBN 9781450380683. https://doi.org/10.1145/3409334.3452084.

  134. Li, C., Salinas, G., Huang, P., Tu, G., Hsu, G., & Hsieh, T. (2018). V2psense: Enabling cellular-based v2p collision warning service through mobile sensing. In IEEE international conference on communications (ICC), (pp. 1–6). https://doi.org/10.1109/ICC.2018.8422981.

  135. Alemneh, E., Senouci, S.-M., & Messous, M.-A. (2020). An energy-efficient adaptive beaconing rate management for pedestrian safety: A fuzzy logic-based approach. Pervasive and Mobile Computing, 69, 101285. https://doi.org/10.1016/j.pmcj.2020.101285.

    Article  Google Scholar 

  136. Bartoletti, S., Conti, A., Dardari, D., & Giorgetti, A. (2018). 5G localization and context-awareness. University of Ferrara: University of Bologna.

  137. Blefari-Melazzi, N., Bartoletti, S., Chiaraviglio, L., Morselli, F., Baena, E., Bernini, G., Giustiniano, D., Hunukumbure, M., Solmaz, G. & Tsagkaris, K. (2020). Locus: Localization and analytics on-demand embedded in the 5g ecosystem. In European conference on networks and communications (EuCNC), (pp. 170–175). https://doi.org/10.1109/EuCNC48522.2020.9200961.

  138. Iorl: Internet of radio light. https://iorl.5g-ppp.eu/.

  139. Bachmann, M., Morold, M., & David, K. (2020a). On the required movement recognition accuracy in cooperative vru collision avoidance systems. IEEE Transactions on Intelligent Transportation Systems 22: 1708-1717. https://doi.org/10.1109/TITS.2020.2976593.

  140. Bachmann, M., Morold, M., Engel, S., Götz, J., & David, K. (2020b). Camera vs. cooperative vru collision avoidance. In IEEE 91st vehicular technology conference (VTC2020-Spring), (pp. 1–5). https://doi.org/10.1109/VTC2020-Spring48590.2020.9128854.

  141. Du, X., Vasudevan, R., & Johnson-Roberson, M. (2019). Bio-lstm: A biomechanically inspired recurrent neural network for 3-d pedestrian pose and gait prediction. IEEE Robotics and Automation Letters, 4(2), 1501–1508. https://doi.org/10.1109/LRA.2019.2895266.

    Article  Google Scholar 

  142. Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., & Wießner, E. (2018). Microscopic traffic simulation using sumo. In The 21st IEEE international conference on intelligent transportation systems. IEEE.

  143. Ns-3: Network simulator 3. https://www.nsnam.org/.

  144. Sommer, C., German, R., & Dressler, F. (2011). Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Transactions on Mobile Computing (TMC), 10(1), 3–15. https://doi.org/10.1109/TMC.2010.133.

    Article  Google Scholar 

  145. Omnet++: Discrete event simulator. https://omnetpp.org/.

  146. Simulte. https://simulte.com/add_veins.html.

  147. Virtual crash 3. https://www.vcrashusa.com/vc3.

  148. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). Mason: A multiagent simulation environment. Simulation, 81(7), 517–527.

    Article  Google Scholar 

  149. Ptv vissim, le logiciel de simulation du trafic routier le plus complet et flexible du marché. https://www.ptvgroup.com/fr/solutions/produits/ptv-vissim/.

  150. Malinverno, M., et al (2020). A multi-stack simulation framework for vehicular applications testing. In 10th ACM symposium on design and analysis of intelligent vehicular networks and applications, (pp. 17–24). https://doi.org/10.1145/3416014.3424603.

  151. Mekrache, A., Bradai, A., Moulay, E., & Dawaliby, S. (2022). Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6g. Vehicular Communications, 33:100398. https://doi.org/10.1016/j.vehcom.2021.100398.

  152. Yang, H., Alphones, A., **ong, Z., Niyato, D., Zhao, J., & Kaishun, W. (2020). Artificial-intelligence-enabled intelligent 6g networks. IEEE Network, 34(6), 272–280. https://doi.org/10.1109/MNET.011.2000195.

    Article  Google Scholar 

  153. Moubayed, A., & Shami, A. (2022). Softwarization, virtualization, and machine learning for intelligent and effective vehicle-to-everything communications. IEEE Intelligent Transportation Systems Magazine, 14(2), 156–173. https://doi.org/10.1109/MITS.2020.3014124.

    Article  Google Scholar 

  154. Ribeiro, B., Nicolau, M. J., & Santos, A. (2022). Leveraging vehicular communications in automatic vrus accidents detection. In 2022 thirteenth international conference on ubiquitous and future networks (ICUFN), (pp. 326–331). https://doi.org/10.1109/ICUFN55119.2022.9829567.

  155. Mostafizur, K. M., Rahman, H., Mahmudul, Md., Elhenawy, M., Yasmin, S., Masoud, M., & Rakotonirainy, A. (2021). Crash severity analysis of vulnerable road users using machine learning. PLoS One, 16(8), e0255828.

    Article  Google Scholar 

  156. Mavromatis, Ioannis, Piechocki, Robert J., Sooriyabandara, Mahesh, & Parekh, Arjun (2020). Drive: A digital network oracle for cooperative intelligent transportation systems. In 2020 IEEE Symposium on Computers and Communications (ISCC), (pp. 1–7). IEEE.

  157. Ahmed, S., Huda, M. N., Rajbhandari, S., Saha, C., Elshaw, M., & Kanarachos, S. (2019). Pedestrian and cyclist detection and intent estimation for autonomous vehicles: A survey. Applied Sciences. https://doi.org/10.3390/app9112335.

  158. Saleh, K., Hossny, M., & Nahavandi, S. (2019). Contextual recurrent predictive model for long-term intent prediction of vulnerable road users. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3398–3408.

    Article  Google Scholar 

  159. Elhenawy, M., Ashqar, H. I., Masoud, M., Almannaa, M. H., Rakotonirainy, A., & Rakha, H. A. (2020). Deep transfer learning for vulnerable road users detection using smartphone sensors data. Remote Sensing. https://doi.org/10.3390/rs12213508.

  160. Zhang, Y., Jiang, C., Yue, B., Wan, J., & Guizani, M. (2022b). Information fusion for edge intelligence: A survey. Information Fusion, 81:171–186. https://doi.org/10.1016/j.inffus.2021.11.018.

Download references

Acknowledgements

We thank the editor and the anonymous reviewers, who provided numerous constructive and thoughtful comments and suggestions that have significantly improved the paper. This work is jointly supported by the neOCampus Grant of University Toulouse 3–Paul Sabatier and the Occitanie province, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaima Zoghlami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoghlami, C., Kacimi, R. & Dhaou, R. 5G-enabled V2X communications for vulnerable road users safety applications: a review. Wireless Netw 29, 1237–1267 (2023). https://doi.org/10.1007/s11276-022-03191-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03191-7

Keywords

Navigation