Log in

Restricting passive attacks in 6G vehicular networks: a physical layer security perspective

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Modern wireless technologies confirm the massive connectivity with sufficient data rate in intelligent transportation systems. Passive attacks may compromise the user’s transmission with increased amenities. Physical layer security can protect transmissions. The paper investigates outage probability (OP) and secrecy outage probability (SOP) for 6G enabled vehicular networks with passive eavesdroppers. The work considers the vehicular to infrastructure scenario with re configurable intelligent surfaces (RIS) instead of power-hungry roadside units. The vehicles and passive eavesdroppers are equipped with dual antennas. Specifically, for 6G vehicular networks, this work presents the analytical expressions for the received signal-to-noise ratio (SNR). We derive first-order secrecy metrics, such as outage probability and secrecy outage probability, from SNR expressions. We have derived SNR expressions for two initial receiver locations (near and far from the legitimate). Due to their robustness towards road parameters and signal parameters, the developed expressions aid in designing and simulating secrecy systems. We conclude that RIS can be more effective than regular access points because no major fluctuations have been observed in secrecy metrics under the influence of RIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poor, H. V., & Schaefer, R. F. (2017). Wireless physical layer security. Proceedings of the National Academy of Sciences, 114(1), 19–26.

    Article  Google Scholar 

  2. Bloch, M., & Barros, J. (2011). Physical-layer security: From information theory to security engineering. Cambridge University Press.

    Book  MATH  Google Scholar 

  3. Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6g be? Nature Electronics, 3(1), 20–29.

    Article  Google Scholar 

  4. Porambage, P., Gür, G., Osorio, D. P. M., Liyanage, M., Gurtov, A., & Ylianttila, M. (2021). The roadmap to 6g security and privacy. IEEE Open Journal of the Communications Society, 2, 1094–1122.

    Article  Google Scholar 

  5. Ozduran, V. (2019). Leakage rate-based untrustworthy relay selection with imperfect channel state information: The outage and security trade-off analysis. IET Communications, 13(13), 1902–1915.

    Article  Google Scholar 

  6. Li, X., Zheng, Y., Khan, W. U., Zeng, M., Li, D., Ragesh, G., & Li, L. (2021). Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things. IEEE Transactions on Green Communications and Networking, 5(3), 1066–1076.

    Article  Google Scholar 

  7. Ozduran, V. (2018). Physical layer security of multi-user full-duplex one-way wireless relaying network. In Advances in Wireless and Optical Communications (RTUWO), 2018 (pp. 17–22).

  8. Papadimitratos, P., Fortelle, A. D. L., Evenssen, K., Brignolo, R., & Cosenza, S. (2009). Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 47(11), 84–95.

    Article  Google Scholar 

  9. Lei, H., Zhang, H., Ansari, I. S., Ren, Z., Pan, G., Qaraqe, K. A., & Alouini, M.-S. (2017). On secrecy outage of relay selection in underlay cognitive radio networks over Nakagami-\( m \) fading channels. IEEE Transactions on Cognitive Communications And Networking, 3(4), 614–627.

    Article  Google Scholar 

  10. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2009). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, K., Lim, J., & Choi, H. (2020). Impact of Outdated CSI on the Secrecy Performance of Wireless-Powered Untrusted Relay Networks. IEEE Transactions on Information Forensics and Security, 15, 1423–1433.

    Article  Google Scholar 

  12. Makarfi, A. U., Rabie, K. M., Kaiwartya, O., Li, X., & Kharel, R. (2020). Physical layer security in vehicular networks with reconfigurable intelligent surfaces. In Proceedings of the of 91st vehicular technology conference (VTC2020-Spring) (pp. 1–6).

  13. Xu, L., Yu, X., Wang, H., Dong, X., Liu, Y., Lin, W., Wang, X., & Wang, J. (2020). Physical layer security performance of mobile vehicular networks. Mobile Networks and Applications, 25(2), 643–649.

    Article  Google Scholar 

  14. Sun, J., Bie, H., Li, X., Zhang, J., Pan, G., & Rabie, K. M. (2019). Secrecy performance analysis of SIMO systems over correlated \(\kappa -\mu \) shadowed fading channels. IEEE Access, 7, 86090–86101.

    Article  Google Scholar 

  15. Ji, B., Li, Y., Cao, D., Li, C., Mumtaz, S., & Wang, D. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 69(7), 7404–7415.

    Article  Google Scholar 

  16. Tang, J., Chen, G., & Coon, J. P. (2019). Secrecy performance analysis of wireless communications in the presence of UAV Jammer and randomly located UAV eavesdroppers. IEEE Transactions on Information Forensics and Security, 14(11), 3026–3041.

    Article  Google Scholar 

  17. Yang, L., **xia, Y., **e, W., Hasna, M., Tsiftsis, T., & Di Renzo, M. (2020). Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Transactions on Vehicular Technology, 2020, 1–1.

    Google Scholar 

  18. Kavaiya, S., Patel, D. K., Ding, Z., Guan, Y. L., & Sun, S. (2021). Physical layer security in cognitive vehicular networks. IEEE Transactions on Communications, 69(4), 2557–2569.

    Article  Google Scholar 

  19. Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., & Qaraqe, K. A. (2016). Secrecy outage performance for SIMO underlay cognitive radio systems with generalized selection combining over Nakagami-\(m\) channels. IEEE Transactions on Vehicular Technology, 65(12), 10126–10132.

    Article  Google Scholar 

  20. Lei, H., Gao, C., Ansari, I. S., Guo, Y., Zou, Y., Pan, G., & Qaraqe, K. A. (2017). Secrecy outage performance of transmit antenna selection for MIMO underlay cognitive radio systems over Nakagami- \(m\) channels. IEEE Transactions on Vehicular Technology, 66(3), 2237–2250.

    Article  Google Scholar 

  21. Makarfi, A. U., Rabie, K. M., Kaiwartya, O., Li, X., Kharel, R. (2020). Physical layer security in vehicular networks with reconfigurable intelligent surfaces. In IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE (pp. 1–6).

  22. Makarfi, A. U., Rabie, K. M., Kaiwartya, O., Adhikari, K., Li, X., Quiroz-Castellanos, M., & Kharel, R. (2020). Reconfigurable intelligent surfaces-enabled vehicular networks: A physical layer security perspective, ar**v preprint ar**v:2004.11288

  23. Mensi, N., Rawat, D. B., & Balti, E. (2020). Physical layer security for v2i communications: Reflecting surfaces vs. relaying, ar**v preprint ar**v:2010.07216

  24. Zhang, J.-H., Tang, P., Yu, L., Jiang, T., & Tian, L. (2020). Channel measurements and models for 6g: Current status and future outlook. Frontiers of Information Technology & Electronic Engineering, 21(1), 39–61.

    Article  Google Scholar 

  25. Ashraf, S. A., Blasco, R., Do, H., Fodor, G., Zhang, C., & Sun, W. (2020). Supporting vehicle-to-everything services by 5g new radio release-16 systems. IEEE Communications Standards Magazine, 4(1), 26–32.

    Article  Google Scholar 

  26. Lei, H., Gao, C., Ansari, I. S., Guo, Y., Pan, G., & Qaraqe, K. A. (2016). On physical-layer security over simo generalized-\(k\) fading channels. IEEE Transactions on Vehicular Technology, 65(9), 7780–7785.

    Article  Google Scholar 

  27. Zhu, S., Guo, C., Feng, C., & Liu, X. (2016). Performance analysis of cooperative spectrum sensing in cognitive vehicular networks with dense traffic. In Proceedings of the VTC Spring (pp. 1–6).

  28. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Academic Press.

    MATH  Google Scholar 

  29. Rich, A. D. & Jeffrey, D. J. (2009). A knowledge repository for indefinite integration based on transformation rules. In Proceedings of the ICICM. Springer (pp. 480–485).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Kavaiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of Secrecy Outage Probability

Appendix A: Derivation of Secrecy Outage Probability

In this section we evaluate the internal terms of the integral to derive the Secrecy Outage Probability over RIS assisted Nakagami-m channel for vehicular networks. The integral terms can be expressed as after taking the constants outside of the integral and performing some mathematical manipulations to identify the special integral rule from [29].

$$\begin{aligned} P_{sop} = \int _{-\infty }^{\lambda } \frac{4 z^{(2-p)/p} exp(-z^{2/p} / m^{(2k-1)}) + d^2_{eff}}{p (m^{2(k-1)}+ d^2_{eff})} dz \end{aligned}$$
(32)

By kee** the constants outside and solving the integral we have the series containing the Gamma function \(\left( \Gamma (\cdot ) \right) \) as:

$$\begin{aligned}{} & {} { P_{sop}} = \left\{ \left[ \frac{1}{2} i^{(p-3) p} p \left( \Gamma \left( -\frac{1}{2} (p-3) p\right) - \right. \right. \right. \nonumber \\{} & {} \quad \left. \left. \left. \Gamma \left( -\frac{1}{2} (p-3) p,-10{,}000^{1/p}\right) \right) ,0<\Re (p)<3\right] \right\} \end{aligned}$$
(33)

The (33) further reduced to the identity given in [28, Section 8] from which (23) is obtained. Similarly, by substituting (13) in (22), the Secrecy Outage Probability is achieved for Nakagami-m fading as (27).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavaiya, S., Patel, D.K. Restricting passive attacks in 6G vehicular networks: a physical layer security perspective. Wireless Netw 29, 1355–1365 (2023). https://doi.org/10.1007/s11276-022-03189-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03189-1

Keywords

Navigation