Log in

Bibliometric Analysis of Phosphorous Removal Through Constructed Wetlands

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Resource management should follow a circular flow so that important substances such as phosphorus are not wasted in the form of water bodies’ pollutants. Therefore, the objective of this study was to investigate innovations focussing on the recovery of phosphorus in constructed wetland (CW) treatment systems, as well as related removal mechanisms and the more recent development and application of new substrates with high removal efficiency and potential for phosphorous recovery. Using bibliometric analysis, the most important P removal pathways were identified and investigated, concluding that substrate choice is one of the main aspects to be considered when aiming for phosphorous removal, and many improvements were obtained through the application of materials from either natural or artificial origins as well as construction waste and by-products of industrial processes. Thus, it is important that the chosen materials for a wetland substrate must present affinity with phosphorous, recycling possibility, low cost and local availability, in order to approach the concepts of circular economy and sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adera, S., Drizo, A., Twohig, E., Jagannathan, K., & Benoit, G. (2018). Improving performance of treatment wetlands: evaluation of supplemental aeration, varying flow direction, and phosphorus removing filters. Water, Air, & Soil Pollution, 229(3). https://doi.org/10.1007/s11270-018-3723-3.

  • Ballantine, D. J., & Tanner, C. C. (2010). Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review. New Zealand Journal of Agricultural Research, 53(1), 71–95. https://doi.org/10.1080/00288231003685843.

    Article  CAS  Google Scholar 

  • Bolton, L., Joseph, S., Greenway, M., Donne, S., Munroe, P., & Marjo, C. E. (2019). Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecological Engineering, 1, 100005. https://doi.org/10.1016/j.ecoena.2019.100005.

    Article  Google Scholar 

  • Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 1–15. https://doi.org/10.3389/fenvs.2018.00008.

  • Campos, J. M., & Teixeira Filho, J. (2019). Balanço de fósforo e nitrogênio em leitos cultivados com Eichhornia crassipes (Mart.) Solms. Engenharia Sanitária e Ambiental, 24(1), 1–11.

    Article  Google Scholar 

  • Cessa, R. M. A., Celi, L., Vitorino, A. C. T., Novelino, J. O., & Barberis, E. (2009). Área superficial específica, porosidade da fração argila e adsorção de fósforo em dois latossolos vermelhos. Revista Brasileira de Ciência do Solo, 33(5), 1153–1162.

    Article  CAS  Google Scholar 

  • Chen, X., Wu, L., Liu, F., Luo, P., Zhuang, X., Wu, J., & **e, G. (2018). Performance and mechanisms of thermally treated bentonite for enhanced phosphate removal from wastewater. Environmental Science and Pollution Research, 25(16), 15980–15989. https://doi.org/10.1007/s11356-018-1794-8.

  • Chen, J., Deng, W. J., Liu, Y. S., Hu, L. X., He, L. Y., Zhao, J. L., Wang, T. T., Ying, G. G. (2019). Fate and removal of antibiotics and antibiotic resistance genes in hybrid constructed wetlands. Environmental Pollution 249, 894–903.

  • Cheng, G., Li, Q., Su, Z., Sheng, S., & Fu, J. (2018). Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands. Journal of Cleaner Production, 175, 572–581. https://doi.org/10.1016/j.jclepro.2017.12.102.

    Article  CAS  Google Scholar 

  • Colares, G. S., De Souza Celente, G., Da Silva, F. P., De Loreto, A. C., Lutterbeck, C. A., Kist, L. T., & Machado, Ê. L. (2019). Combined system for the treatment and reuse of urban wastewater: the efficiency of anaerobic reactors + hybrid constructed wetlands + ozonation. Water Science and Technology. https://doi.org/10.2166/wst.2019.270.

  • Colares, G. S., Dell’Osbel, N., Wiesel, P. G., Oliveira, G. A., Lemos, P. H. Z., Silva, F. P., Lutterbeck, C. A., Kist, L. T., & Machado, E. M. (2020). Floating treatment wetlands: a review and bibliometric analysis. Science of the Total Environment, 714, 136776. https://doi.org/10.1016/j.scitotenv.2020.136776.

    Article  CAS  Google Scholar 

  • Cordell, D. (2008) The story of phosphorous: missing global governance of a critical resource. Paper prepared for SENSE Earth Systems Governance, Amsterdam, 24th-31st August, 2008. Preliminary findings from 2 years of doctoral research Suécia: Global Phosphorus Research Initiative. Disponível em: http://phosphorusfutures.net.

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009.

    Article  Google Scholar 

  • Cui, L. H., Zhu, X. Z., Ma, M., Ouyang, Y., Dong, M., Zhu, W. L., & Luo, S. M. (2008). Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland. Archives of Environmental Contamination and Toxicology, 55(2), 210–217.

    Article  CAS  Google Scholar 

  • Dai, H., & Hu, F. (2017). Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems: a comparative study. Polish Journal of Environmental Studies, 26(3). https://doi.org/10.15244/pjoes/66708.

  • Daneshgar, S., Callegari, A., Capodaglio, A., & Vaccari, D. (2018). The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources, 7(37), 1–22.

    Google Scholar 

  • De Souza, M. P., Hoeltz, M., Gressler, P. D., Benitez, L. B., & Schneider, R. C. S. (2018). Potential of microalgal bioproducts: general perspectives and main challenges. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-018-0253-6.

  • Di Luca, G. A., Maine, M. A., Mufarrege, M. M., Hadad, H. R., Pedro, M. C., Sánchez, G. C., & Caffaratti, S. E. (2017). Phosphorus distribution pattern in sediments of natural and constructed wetlands. Ecological Engineering, 108, 227–233. https://doi.org/10.1016/j.ecoleng.2017.08.038.

    Article  Google Scholar 

  • Dornelas, F. L., Machado, M. B., & von Sperling, M. (2009). Performance evaluation of planted and unplanted subsurfaceflow constructed wetlands for the post-treatment of UASB reactor effluents. Water Science and Technology, 60(12), 3025–3033. https://doi.org/10.2166/wst.2009.743.

  • Du, L., Chen, Q., Liu, P., Zhang, X., Wang, H., Zhou, Q., & Wu, Z. (2017). Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by integrated vertical-flow constructed wetlands (IVCWs). Bioresource Technology, 243, 204–211. https://doi.org/10.1016/j.biortech.2017.06.092.

    Article  CAS  Google Scholar 

  • Eck, N. J. V. & Waltman, L. (2019) Manual for VOSviewer version 1.6.10. Uninversiteit Leiden, CWTS Meaningful metrics.

  • Ferreira, J. B., & Silva, L. A. M. (2019). The use of bibliometry and sociometry as a differential in review research. Brazilian Journal of Librarianship and Documentation, 15(2).

  • Fia, F. R. L., De Matos, A. T., Fia, R., Borges, A. C., & Cecon, P. R. (2016). Effect of vegetation on constructed wetlands systems to treat swine wastewater. Sanitary and Environmental Engineering, 22(2), 303–311. https://doi.org/10.1590/s1413-41522016123972.

    Article  Google Scholar 

  • Gao, Y., Yan, C., Wei, R., Zhang, W., Shen, J., Wang, M., & Yang, L. (2019). Photovoltaic electrolysis improves nitrogen and phosphorus removals of biochar-amended constructed wetlands. Ecological Engineering, 138, 71–78. https://doi.org/10.1016/j.ecoleng.2019.07.004.

    Article  Google Scholar 

  • Ge, Z., Wei, D., Zhang, J., Hu, J., Liu, Z., & Li, R. (2019). Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study. Water Research, 148, 153–161. https://doi.org/10.1016/j.watres.2018.10.037.

    Article  CAS  Google Scholar 

  • Haritash, A. K., Dutta, S., & Sharma, A. (2017). Phosphate absorption and translocation in a Canna-based tropical constructed wetland. Ecological Processes, 6(12).

  • He, X., Qiao, Y., Liang, L., Knudsen, M. T., & Martin, F. (2018). Environmental life cycle assessment of long-term organic rice production in subtropical China. Journal of Cleaner Production, 176, 880–888. https://doi.org/10.1016/j.jclepro.2017.12.045.

    Article  CAS  Google Scholar 

  • Ilyas, H., & Masih, I. (2018). The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal. Environmental Science and Pollution Research, 25(6), 5318–5335.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Boca Raton: CRC Press/Lewis Publishers.

    Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (2nd ed.). New York: Taylor and Francis Group.

    Google Scholar 

  • Kasprzyk, M., & Gajewska, M. (2019). Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Science of the Total Environment, 650, 249–256. https://doi.org/10.1016/j.scitotenv.2018.09.034.

    Article  CAS  Google Scholar 

  • Kizito, S., Lv, T., Wu, S., Ajmal, Z., Luo, H., & Dong, R. (2017). Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: role of media and tidal operation. Science of the Total Environment, 592, 197–205. https://doi.org/10.1016/j.scitotenv.2017.03.125.

    Article  CAS  Google Scholar 

  • Kumar, S., & Dutta, V. (2019). Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-04816-9.

  • Lan, W., Zhang, J., Hu, Z., Ji, M., Zhang, X., Zhang, J., & Yao, G. (2018). Phosphorus removal enhancement of magnesium modified constructed wetland microcosm and its mechanism study. Chemical Engineering Journal, 335, 209–214. https://doi.org/10.1016/j.cej.2017.10.150.

    Article  CAS  Google Scholar 

  • Lima, M. X., Carvalho, K. Q., Passig, F. H., Borges, A. C., Filippe, T. C., Azevedo, J. C. R., & Nagalli, A. (2018). Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions. Science of the Total Environment, 630, 1365–1373.

    Article  CAS  Google Scholar 

  • Machado, A. I., Beretta, M., Fragoso, R., & Duarte, E. (2017). Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of Environmental Management, 187, 560–570. https://doi.org/10.1016/j.jenvman.2016.11.015.

    Article  CAS  Google Scholar 

  • Masi, F., Rizzo, A., & Regelsberger, M. (2018). The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Journal of Environmental Management, 216, 275–284. https://doi.org/10.1016/j.jenvman.2017.11.086.

    Article  CAS  Google Scholar 

  • Matos, A. T., Abrahão, S. S., & Pereira, O. G. (2008). Desempenho agronômico de capim tifton 85 (cynodon spp) cultivado em sistemas alagados construídos utilizados no tratamento de água residuária de laticínios. Revista Ambiente & Água - An Interdisciplinary Journal of Applied Science, 3(1), 43–53.

    Article  Google Scholar 

  • Md Sa’at, S. K., Zaman, N. Q., & Yusoff, M. S. (2019). Effect of hydraulic retention time on palm oil mill effluent treatment in horizontal sub-surface flow constructed wetland. AIP Conference Proceedings, 2124, 020015. https://doi.org/10.1063/1.5117075.

    Article  CAS  Google Scholar 

  • Menon, R., & Holland, M. M. (2013). Phosphorus retention in constructed wetlands vegetated with Juncus effusus, Carex lurida, and Dichanthelium acuminatum var. acuminatum. Water, Air, & Soil Pollution, 224(7). https://doi.org/10.1007/s11270-013-1602-5.

  • Metcalf, L. & Eddy, H. P. (2016) Effluent treatment and effluent recovery. Editora Mc Graw Hill Education. ISBN 978 -85-8055-523-3. 5 edição.

  • Morera, S., Corominas, L., Poch, M., Aldaya, M. M., & Comas, J. (2016). Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production, 112, 4741–4748. https://doi.org/10.1016/j.jclepro.2015.05.102.

    Article  CAS  Google Scholar 

  • Okoye, N. M., Madubuike, C. N., Nwuba, I. U., Ozokoli, S. N., & Ugwuishiwu, B. O. (2018). Performance and short term durability of palm kernel shell as a substrate material in a pilot horizontal subsurface flow constructed wetland treating slaughterhouse wastewater. Journal of Water Security, 4. https://doi.org/10.15544/jws.2018.004.

  • Oliveira, M., Ribeiro, D., Nobrega, J. M., Machado, A. V., Brito, A. G., & Nogueira, R. (2011). Removal of phosphorus from water using active barriers: Al2O3 immobilized on to polyolefins. Environmental Technology, 32(9), 989–995. https://doi.org/10.1080/09593330.2010.522597.

    Article  CAS  Google Scholar 

  • Park, J. H., Wang, J. J., Kim, S. H., Cho, J. S., Kang, S. W., Delaune, R. D., & Seo, D. C. (2017). Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag. Chemical Engineering Journal, 327, 713–724. https://doi.org/10.1016/j.cej.2017.06.155.

    Article  CAS  Google Scholar 

  • Pelissari, C., Sezerino, P. H., Bento, A. P., Carvalho, J., De, O., Decezaro, S. T., & Wolff, D. B. (2019). Nitrogen and phosphorus incorporation in leaf tissue of macrophyte Typha domingensis Pers. during the treatment of dairy cattle effluent in constructed wetlands. Journal Sanitary and Environmental Engineering, 1–6. https://doi.org/10.1590/S1413-41522019109345.

  • Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water, Air, & Soil Pollution, 229(4). https://doi.org/10.1007/s11270-018-3706-4.

  • Quevedo, C. M. G., & Paganini, W. S. (2011). Impacts of human activities on the dynamics of phosphorus in the environment and its effects on public health. Science & Public Health, 16(8), 3529–3539.

    Google Scholar 

  • Reddy, K. R., & D’Angelo, E. M. (1994). Soil process regulating water quality in wetlands. In W. J. Mitsch (Ed.), Global wetlands: old world and new (pp. 309–324). Amsterdam: Elsevier.

    Google Scholar 

  • Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology, 29(1), 83–146.

    Article  CAS  Google Scholar 

  • Roy, E. D. (2016). Phosphorus recovery and recycling with ecological engineering: a review. Ecological Engineering, 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076.

    Article  Google Scholar 

  • Shen, Y., Zhuang, L., Zhang, J., Fan, J., Yang, T., & Sun, S. (2018). A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2018.11.152.

  • Shi, X., Fan, J., Zhang, J., & Shen, Y. (2017). Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes. Environmental Science and Pollution Research, 24(28), 22524–22534. https://doi.org/10.1007/s11356-017-9870-z.

    Article  CAS  Google Scholar 

  • Tan, X., Yang, Y., Liu, Y., Li, X., Fan, X., Zhou, Z., & Yin, W. (2019). Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.02.036.

  • Theregowda, R. B., González-mejía, A. M., Ma, X. C., & Garland, J. (2019). Nutrient recovery from municipal wastewater for sustainable food production systems: an alternative to traditional fertilizers. Environmental Engineering Science, 36(7), 833–842.

    Article  CAS  Google Scholar 

  • Tsihrintzis, V. A. (2017). The use of vertical flow constructed wetlands in wastewater treatment. Water Resources Management, 31(10), 3245–3270. https://doi.org/10.1007/s11269-017-1710-x.

    Article  Google Scholar 

  • Tuyan, M., Andiç-çakir, Ö., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure os waste clay brick powder-based geopolymer. Composites Part B, 135, 242–252.

    Article  CAS  Google Scholar 

  • Vohla, C., Põldvere, E., Noorvee, A., Kuusemets, V., & Mander, U. (2005). Al-ternative filter media for phosphorus removal in a horizontal subsurface-flow constructed wetland. Journal of Environmental Science and Health Part A, 40, 1251–1264.

  • Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands - a review. Ecological Engineering, 37(1), 70–89. https://doi.org/10.1016/j.ecoleng.2009.08.003.

  • Vymazal, J. (1995). Algae and element cycling in wetlands. Chelsea: Lewis Publishers 698 pp.

    Google Scholar 

  • Wang, R., Zhao, X., Liu, H., & Wu, H. (2019). Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater. Bioresource Technology, 273, 529–537. https://doi.org/10.1016/j.biortech.2018.11.044.

    Article  CAS  Google Scholar 

  • White, S. A., Taylor, M. D., Albano, J. P., Whitwell, T., & Klaine, S. J. (2011). Phosphorus retention in lab and field-scale subsurface-flow wetlands treating plant nursery runoff. Ecological Engineering, 37(12), 1968–1976.

  • Wu, J., Xu, D., Zhou, Q., Zhang, L., He, F., & Wu, Z. (2019). Effects of layered combined substrates on plant growth and treatment performance and its spatiotemporal variation of vertical-flow constructed wetlands. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-05593-1.

  • Yang, Y., Zhao, Y., Liu, R., & Morgan, D. (2018). Global development of various emerged substrates utilized in constructed wetlands. Bioresource Technology, 261, 441–452. https://doi.org/10.1016/j.biortech.2018.03.085.

  • Yin, H., Yan, X., & Gu, X. (2017). Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands. Water Research, 115(329), 338. https://doi.org/10.1016/j.watres.2017.03.014.

  • Zhi, W., & Ji, G. (2012). Constructed wetlands, 1991–2011: a review of research development, current trends, and future directions. Science of the Total Environment, 441, 19–27. https://doi.org/10.1016/j.scitotenv.2012.09.064.

    Article  CAS  Google Scholar 

  • Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecological Engineering, 37(10), 1460–1466. https://doi.org/10.1016/j.ecoleng.2011.03.010.

    Article  Google Scholar 

  • Ziegler, V. L. (2016). Exploration of the use of treatment wetlands as a nutrient management strategy in Wisconsin. The Nature Conservancy. Natural Infrastructure Fellow, October, 41 p.

Download references

Funding

The authors would like to thank the financing of Capes Prosup and UNISC, and the financial support provided by FAPERGS Fundação de Amparo a Pesquisado Estado do Rio Grande do Sul, PqG2017, CNPq-9Pro-ject 307257/2015-0 and CNPq-Project 307599/2018-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ênio Leandro Machado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Osbel, N., Colares, G.S., de Oliveira, G.A. et al. Bibliometric Analysis of Phosphorous Removal Through Constructed Wetlands. Water Air Soil Pollut 231, 117 (2020). https://doi.org/10.1007/s11270-020-04513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04513-1

Keywords

Navigation