Log in

The TPS Direct Transport: A New Method for Transporting Deformations in the Size-and-Shape Space

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Modern shape analysis allows the fine comparison of shape changes occurring between different objects. Very often the classic machineries of generalized Procrustes analysis and principal component analysis are used in order to contrast the shape change occurring among configurations represented by homologous landmarks. However, if size and shape data are structured in different groups thus constituting different morphological trajectories, a data centering is needed if one wants to compare solely the deformation representing the trajectories. To do that, inter-individual variation must be filtered out. This maneuver is rarely applied in studies using simulated or real data. A geometrical procedure named parallel transport, that can be based on various connection types, is necessary to perform such kind of data centering. Usually, the Levi Civita connection is used for interpolation of curves in a Riemannian space. It can also be used to transport a deformation. We demonstrate that this procedure does not preserve some important characters of the deformation, even in the affine case. We propose a novel procedure called ‘TPS Direct Transport’ which is able to perfectly transport deformation in the affine case and to better approximate non affine deformation in comparison to existing tools. We recommend to center shape data using the methods described here when the differences in deformation rather than in shape are under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. Journal IEEE Transactions on Pattern Analysis and Machine Intelligence archive, 11(6), 567–585.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bookstein, F. L. (1997). Two shape metrics for biomedical outline data: Bending energy, Procrustes distance, and the biometrical modeling of shape phenomena. In Proceedings of 1997 international conference on shape modeling and applications.

  • Boyer, D. M., Lipman, Y., Clair, E. S., Puente, J., Patel, B. A., Funkhouser, T., et al. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences, 108(45), 18221–18226.

    Article  Google Scholar 

  • Charlier, B., Charon, N., & Trouvé, A. (2015). The fshape framework for the variability analysis of functional shapes. Foundations of Computational Mathematics, pp. 1–71.

  • Collyer, M. L., & Adams, D. C. (2013). Phenotypic trajectory analysis: Comparison of shape change patterns in evolution and ecology. Hystrix, 24, 75–82.

    Google Scholar 

  • Cootes, T. F., Twining, C. J., Babalola, K. O., & Taylor, C. J. (2008). Diffeomorphic statistical shape models. Image and Vision Computing, 26(3), 326–332.

    Article  Google Scholar 

  • Crampin, M., & Pirani, F. A. E. (1986). Applicable differential geometry. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. Hoboken: Wiley.

    MATH  Google Scholar 

  • Duchateau, N., De Craene, M., Pennec, X., Merino, B., Sitges, M., & Bijnens, B. (2012). Which reorientation framework for the atlas-based comparison of motion from Cardiac image sequences? In Spatio-temporal image analysis for longitudinal and time-series image data, volume 7570 of the series Lecture Notes in Computer Science (pp. 25–37).

  • Erikson, A. P., & Astrom, K. (2012). On the bijectivity of thin-plate splines. Analysis for Science, Engineering and Beyond, 6, 93–141.

    Article  MathSciNet  Google Scholar 

  • Fiot, J. B., Risser, L., Cohen, L. D., Fripp, J., & Vialard, F. X. (2012). Local vs global descriptors of hippocampus shape evolution for Alzheimer’s longitudinal population analysis. In 2nd International MICCAI workshop on spatiotemporal image analysis for longitudinal and time-series image data (STIA ’12) (pp. 13–24). Nice.

  • Glaunès, J. (2005). Transport par diffomorphismes de points, de mesures et de courants pour la comparaison de formes et lanatomie numrique. Ph.D. Thesis, Universit Paris 13.

  • Huckemann, S., Hotz, T., & Munk, A. (2010). Intrinsic MANOVA for Riemannian manifolds with an application to Kendall’s spaces of planar shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 593–603.

    Article  Google Scholar 

  • Kendall, D. G. (1977). The diffusion of shape. Advances in Applied Probability, 9(3), 428–430.

    Article  Google Scholar 

  • Kendall, D. G., Barden, D., Carne, T. K., & Le, H. (1999). Shape and shape theory. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Klingenberg, W. (1982). Riemannian geometry. Berlin: Walter de Gruyter.

    MATH  Google Scholar 

  • Kume, A., Dryden, I. L., & Le, H. (2007). Shape space smoothing splines for planar landmark data. Biometrika, 94, 513–528.

    Article  MathSciNet  MATH  Google Scholar 

  • Le, H. (2003). Unrolling shape curves. Journal of the London Mathematical Society, 2(68), 511–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Le, H., & Kume, A. (2000). Detection of shape changes in biological features. Journal of Microscopy, 200(2), 140–147.

    Article  Google Scholar 

  • Lorenzi, M., & Pennec, X. (2013). Efficient parallel transport of deformations in time series of images: From Schild’s to Pole Ladder. Journal of Mathematical Imaging and Vision, 50(1–2), 5–17.

    MATH  Google Scholar 

  • Lorenzi, M., & Pennec, X. (2013). Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration. International Journal of Computer Vision, 105, 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzi, M., Ayache, N., Frisoni, G. B., and Pennec, X. (2011). Map** the effects of A\(\beta _{1-42}\) levels on the longitudinal changes in healthy aging: Hierarchical modeling based on stationary velocity fields. In Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI), volume 6892 of LNCS (pp. 663–670). Springer.

  • Marle, C.-M. (2007). The works of Charles Ehresmann on connections: From Cartan connections to connections on fibre bundles. In Banach Center Publications, volume 76. Polish Academy of Sciences, Warszawa. ar**v:1401.8272.

  • Marsland, S., & Twining, C. (2015). Principal autoparallel analysis: data analysis in Weitzenbck space. ar**v:1511.03355.

  • Miller, M. I., Mori, S., Qiu, A., Zhang, J., & Ceritoglu, C. (2013). Advanced cost functions for image registration for automated image analysis: Multi-channel, hypertemplate, and atlas with built-in variability. U.S. Patent No. 8,600,131 B2.

  • Miller, M. I., & Qiu, A. (2009). The emerging discipline of computational functional anatomy. Neuroimage, 45, 516–539.

    Article  Google Scholar 

  • Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41(1–2), 61–84.

    Article  MATH  Google Scholar 

  • Miller, M., Younes, L., & Trouvé, A. (2014). Diffeomorphometry and geodesic positioning systems for human anatomy. Technology, 2, 36–43.

    Article  Google Scholar 

  • Miller, M., Younes, L., & Trouve, A. (2015). Hamiltonian systems in computational anatomy: 100 years since D’Arcy Thompson. Annual Review of Biomedical Engineering, 17, 447–509.

    Article  Google Scholar 

  • Niethammer, M., & Vialard, F. X. (2013). Riemannian metrics for statistics on shapes: parallel transport and scale invariance. In Proceedings of the 4th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA) (pp. 1–13).

  • Pennec, X., Lorenzi, M. (2011). Which parallel transport for the statistical analysis of longitudinal deformations?. Colloque GRETSI ’11. Bordeaux, France.

  • Peter, A. M., & Rangarajan, A. (2009). Information geometry for landmark shape analysis: Unifying shape representation and deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 337–350.

    Article  Google Scholar 

  • Piras, P., Evangelista, A., Gabriele, S., Nardinocchi, P., Teresi, L., Torromeo, C., et al. (2014). 4D-analysis of left ventricular heart cycle using procrustes motion analysis. PLoS ONE, 9(1), e86896.

    Article  Google Scholar 

  • Piras, P., Torromeo, C., Evangelista, A., Gabriele, S., Esposito, G., Nardinocchi, P., et al. (in press). Homeostatic left heart integration and disintegration links atrio-ventricular covariation’s dyshomeostasis in hypertrophic cardiomyopathy. Scientific Reports.

  • Pokrass, J., Bronstein, A. M., & Bronstein, M. M. (2013). Partial shape matching without point-wise correspondence. Numerical Mathematics: Theory, Methods and Applications (NM-TMA), 6(1), 223–244.

  • Qiu, A., & Younes, M. (2008). Time sequence diffeomorphic metric map** and parallel transport track time-dependent shape changes. Neuroimage, 45(1 Suppl), S51–S60. doi:10.1016/j.neuroimage.2008.10.039.

    Google Scholar 

  • Rohlf, F. J., & Bookstein, F. L. (2003). Computing the uniform component of shape variation. Systematic Biology, 52(1), 66–69.

    Article  Google Scholar 

  • Schouten, J. A. (1954). Ricci calculus. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Spivak, M. (1999). A comprehensive introduction to differential geometry, Vol. 2, 3rd edn. Publish or Perish, Inc. 06. Houston

  • Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011). Shape analysis of elastic curves in euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1415–1428.

    Article  Google Scholar 

  • Sundaramoorthi, G., Mennucci, A., Soatto, S., & Yezzi, A. (2011). A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM Journal on Imaging Sciences, 4(1), 109–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, X., Holland, D., Dale, A. M., Younes, L., & Miller, M. I. (2015). The diffeomorphometry of regional shape change rates in mild cognitive impairment and Alzheimers disease. Human Brain Map**, 36, 2093–2117.

    Article  Google Scholar 

  • Trouvé, A. (1995). An approach to pattern recognition through infinite dimensional group action. Technical Report, Ecole Nationale Superieure, Université Paris 6, Departement de Mathématiques et Informatique, Laboratoire d’Analyse Numerique.

  • Trouvé, A., & Younes, L. (2005). Metamorphoses through lie group action. Foundations of Computational Mathematics, 5, 173–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Twining, C., Marsland, S., Taylor, C.: Metrics, connections, and correspondence: the setting for groupwise shape analysis. InEnergy minimization methods in computer vision and pattern recognition (pp. 399–412). Springer (2011)

  • Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In G. Christensen & M. Sonka (Eds.), IPMI, series lecture notes in computer science (pp. 381–392). Berlin: Springer-Verlag.

    Google Scholar 

  • Varano, V., Gabriele, S., Teresi, L., Dryden, I., Puddu, P. E., Torromeo, C., et al. (2015). Comparing shape trajectories of biological soft tissues in the size-and-shape space. BIOMAT, 2014, 351–365.

    MATH  Google Scholar 

  • **e, Q., Kurtek, S., Le, H., Srivastava, A. (2013). Parallel transport of deformations in shape space of elastic surface. InIEEE International Conference on Computer Vision (ICCV), Sydney, Australia.

  • Yezzi, A. J., & Soatto, S. (2003). Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images. International Journal of Computer Vision, 53(2), 153–167.

    Article  MATH  Google Scholar 

  • Younes, L. (2007). Jacobi Fields in groups of diffeomorphisms and applications. Quarterly of Applied Mathematics, pp. 113–134

  • Younes, L., Qiu, A., Winslow, R., & Miller, M. (2008). Transport of relational structures in groups of diffeomorphisms. Journal of Mathematical Imaging and Vision, 32(1), 41–56.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Lena R. Zastrow and Antonio DiCarlo for hints and advices; their helpful discussions stimulated us to go far beyond our initial intuitions. The authors wish also to express their gratitude to Willem Gorissen, Clinical Market Manager Cardiac Ultrasound at Toshiba Medical Systems Europe, Zoetermeer, The Netherland, for his continuous support and help. We thank Antonio Profico for his unvaluable support in building deformetrics R package. We also thank three anonymous reviewers for their help in improving the manuscript. L.T., V.V. and S.G acknowledge the National Group of Mathematical Physics (GNFM-INdAM), Italy, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Varano.

Additional information

Communicated by B. C. Vemuri.

Appendix

Appendix

In the following we derive the right value of \(\nu \) coefficient used for quantifying the absolute value of the bending energy (Eqs. 5.85.9).

We start from the Eq. (3.2) from Kent, J. T., & Mardia, K. V. (1994). The link between kriging and thin plate splines. In Probability, Statistics and Optimization, Ed. F. P. Kelly, pp. 324–339. New York: Wiley.

$$\begin{aligned} \sigma _\alpha (h)= & {} c_{\alpha ,d}|h|^{2\alpha } \alpha>0, \alpha ~ \text {not an integer}\\ \sigma _k(h)= & {} b_{k,d}|h|^{2k} \log |h| \alpha =k, k>0~ \text {an integer} \end{aligned}$$

where

$$\begin{aligned} c_{\alpha ,d}= & {} 2^{-2\alpha }\pi ^{d/2}\varGamma (-\alpha )/\varGamma (k+d/2)\\ b_{k,d}= & {} 2^{-2k+1}(-1)^{k-1}\pi ^{d/2}/\{\varGamma (k+d/2)k!\} \end{aligned}$$

In the same paper the Eq. (5.3) gives the expression for the Bending Energy:

$$\begin{aligned} J^d_{r+1}(y^*)=(2\pi )^2 y^TBy \end{aligned}$$

where \(r=1=\alpha \).

1.1 Two Dimensional Case

In the two dimensional case \(d=2,\alpha =1=k\) (Theorem 1 p. 333 Kent and Mardia 1994).

$$\begin{aligned} \sigma _1(h)= & {} b_{k,d}|h|^2 \log |h|\\ b_{k,d}= & {} b_{1,2}=2^{-1}(-1)^0\frac{\pi ^{2/2}}{\varGamma \left( 1+\frac{1}{2}\right) 1!} =\frac{1}{2}\frac{\pi }{\varGamma \left( 2\right) }=\frac{\pi }{2} \end{aligned}$$

Covariation function \(\sigma (h)=\frac{\pi }{2}|h|^2 \log |h|\) leads to Bending Energy \(J=(2\pi )^2 y^TBy\).

So, with \(\sigma (h)=|h|^2 \log |h|\) we obtain a Bending Energy

$$\begin{aligned} J=(2\pi )^2 y^TBy \times \frac{2}{\pi }= 8\pi y^T{ By} \end{aligned}$$

If we use \(\sigma (h)=|h|^2 \log |h|^2=2|h|^2 \log |h|\) we obtain a Bending Energy

$$\begin{aligned} J=(2\pi )^2 y^TBy \times \frac{4}{\pi }= 16\pi y^T{ By} \end{aligned}$$

1.2 Three Dimensional Case

In the three dimensional case \(d=3,\alpha =1/2\) (Theorem 1 p. 333 Kent and Mardia 1994).

$$\begin{aligned} \sigma _{1/2}(h)= & {} c_{\alpha ,d}|h|^{1/2}\\ c_{1/2,3}= & {} 2^{-1}\frac{\pi ^{3/2}\varGamma (-1/2)}{\varGamma (1/2+3/2)}=\frac{1}{2}\frac{\pi ^{3/2}(-2)\sqrt{\pi }}{\varGamma (2)}=-\pi ^2 \end{aligned}$$

where we used the properties \(\varGamma (2)=1\) and \(\varGamma (-1/2)=-2\sqrt{\pi }\).

So \(\sigma _{1/2}(h)=-\pi ^2|h|^{1/2}\) gives \(J=(2\pi )^3 y^TBy\).

Hence \(\sigma (h)=-|h|^{1/2}\) gives

$$\begin{aligned} J=\frac{8\pi ^3}{\pi ^2} y^TBy = 8\pi y^TBy. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varano, V., Gabriele, S., Teresi, L. et al. The TPS Direct Transport: A New Method for Transporting Deformations in the Size-and-Shape Space. Int J Comput Vis 124, 384–408 (2017). https://doi.org/10.1007/s11263-017-1031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-1031-9

Keywords

Navigation