Log in

Soft EHL Simulations of Lubricant Film Thickness in Textured Hard-on-Soft Bearings Considering Different Cavitation Models, in the Context of Prosthetic Hip Implants

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We use soft elasto-hydrodynamic lubrication simulations to calculate the lubricant film thickness in textured hard-on-soft parallel slider bearings and compare a mass-conserving cavitation model based on the Elrod implementation of the Jakobsson, Floberg, and Olsson (JFO) theory to simplified Reynolds and half-Sommerfeld cavitation models. We determine the optimum texture design parameters that maximize the lubricant film thickness for a range of bearing operating conditions and compare the results obtained with the different cavitation models. We determine that the JFO cavitation model predicts smaller optimum texture aspect ratios than the Reynolds cavitation model, and that the difference between the lubricant film thickness calculated with the different cavitation models increases with increasing texture aspect ratio and decreasing flow factor. These results are useful to determine when the mass-conserving JFO cavitation model or the simplified Reynolds cavitation model should be employed. Furthermore, the results are relevant to designing textured hard-on-soft bearings with application in, e.g., prosthetic hip implants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Source data available by request.

Code Availability

We used custom code develop by our lab, in combination with Ansys.

Abbreviations

c :

Bearing surface separation

d(x,y):

Polyethylene deformation

D(X,Y):

Non-dimensional polyethylene deformation, d/2rp

E :

Young’s modulus

h(x,y):

Lubricant film thickness

H(X,Y):

Non-dimensional lubricant film thickness, h/c (simulation), or h/2rp (results)

H min :

Minimum non-dimensional lubricant film thickness

H opt :

Optimum non-dimensional lubricant film thickness

h p :

Depth of texture feature

p(x,y):

Lubricant film pressure

P(X,Y):

Non-dimensional lubricant film pressure, p/p0

p 0 :

Atmospheric pressure

P avg :

Average non-dimensional lubricant film pressure

p cav :

Cavitation threshold

P cav :

Non-dimensional cavitation threshold

r 1 :

Half-length of square unit cell

r p :

Radius of texture feature

S p :

Texture density, πrp2/4r12

S p max :

Maximum texture density, π/4

U :

Relative sliding velocity between bearing surfaces

W :

Bearing load-carrying capacity, ∫∫P(X,Y)dXdY = Pavg

x, y, z :

Cartesian coordinates

X, Y, Z :

Non-dimensional Cartesian coordinates, x/rp, y/rp, z/rp

δ :

Non-dimensional bearing surface separation, c/2rp

ε :

Texture aspect ratio, hp/2rp

ε opt :

Optimum texture aspect ratio

θ(X,Y):

Fractional film content parameter

λ :

Flow factor, 3µU/2rpp0

µ :

Dynamic viscosity

ν :

Poisson’s ratio

References

  1. Learmonth, I.D., Young, C., Rorabeck, C.: The operation of the century: total hip replacement. Lancet 370, 1508–1519 (2007). https://doi.org/10.1016/S0140-6736(07)60457-7

    Article  Google Scholar 

  2. Sloan, M., Premkumar, A., Sheth, N.P.: Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. 100, 1455–1460 (2018). https://doi.org/10.2106/JBJS.17.01617

    Article  Google Scholar 

  3. Halawi, M.J., Brigati, D., Messner, W., Brooks, P.J.: Total hip arthroplasty in patients 55 years or younger: Risk factors for poor midterm outcomes. J. Clin. Orthop. Trauma 9, 103–106 (2018). https://doi.org/10.1016/j.jcot.2016.12.009

    Article  Google Scholar 

  4. Foran, J.R.H.: Total hip replacement. https://orthoinfo.aaos.org/en/treatment/total-hip-replacement. Accessed 20 Aug 2021

  5. Heckmann, N.D., Sivasundaram, L., Stefl, M.D., Kang, H.P., Basler, E.T., Lieberman, J.R.: Total hip arthroplasty bearing surface trends in the United States from 2007 to 2014: the rise of ceramic on polyethylene. J. Arthroplasty 33, 1757–1763 (2018)

    Article  Google Scholar 

  6. Rieker, C., Konrad, R., Schon, R.: In vitro comparison of the two hard-hard articulations for total hip replacements. Proc. Inst. Mech. Eng. H 215, 153–160 (2001)

    Article  CAS  Google Scholar 

  7. Bosker, B.H., Ettema, H.B., Boomsma, M.F., Kollen, B.J., Maas, M., Verheyen, C.C.P.M.: High incidence of pseudotumour formation after large-diameter metal-on-metal total hip replacement. J. Bone Joint. Surg. Br. 94-B, 755–761 (2012). https://doi.org/10.1302/0301-620x.94b6.28373

    Article  Google Scholar 

  8. Choi, I.Y., Kim, Y.S., Hwang, K.T., Kim, Y.H.: Incidence and factors associated with squeaking in alumina-on-alumina THA. Clin. Orthop. Relat. Res. 468, 3234–3239 (2010). https://doi.org/10.1007/s11999-010-1394-5

    Article  Google Scholar 

  9. Evans, J.T., Evans, J.P., Walker, R.W., Blom, A.W., Whitehouse, M.R., Sayers, A.: How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 393, 647–654 (2019). https://doi.org/10.1016/S0140-6736(18)31665-9

    Article  Google Scholar 

  10. Rajaee, S.S., Campbell, J.C., Mirocha, J., Paiement, G.D.: Increasing burden of total hip arthroplasty revisions in patients between 45 and 64 years of age. J. Bone Jt. Surg. 100, 449–458 (2018)

    Article  Google Scholar 

  11. Harris, W.H.: Wear and periprosthetic osteolysis: the problem. Clin. Orthop. Relat. Res. 393, 66–70 (2001)

    Article  Google Scholar 

  12. Liu, A., Richards, L., Bladen, C.L., Ingham, E., Fisher, J., Tipper, J.L.: The biological response to nanometre-sized polymer particles. Acta Biomater. 23, 38–51 (2015). https://doi.org/10.1016/j.actbio.2015.05.016

    Article  CAS  Google Scholar 

  13. Capello, W.N., D’Antonio, J.A., Ramakrishnan, R., Naughton, M.: Continued improved wear with an annealed highly cross-linked polyethylene. Clin. Orthop. Relat. Res. 469, 825–830 (2011). https://doi.org/10.1007/s11999-010-1556-5

    Article  Google Scholar 

  14. Laurent, M.P., Johnson, T.S., Crowninshield, R.D., Blanchard, C.R., Bhambri, S.K., Yao, J.Q.: Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J. Arthroplasty 23, 751–761 (2008). https://doi.org/10.1016/j.arth.2007.06.006

    Article  Google Scholar 

  15. Oral, E., Christensen, S.D., Malhi, A.S., Wannomae, K.K., Muratoglu, O.K.: Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J. Arthroplasty 21, 580–591 (2006). https://doi.org/10.1016/j.arth.2005.07.009

    Article  Google Scholar 

  16. Scemama, C., Anract, P., Dumaine, V., Babinet, A., Courpied, J.P., Hamadouche, M.: Does vitamin E-blended polyethylene reduce wear in primary total hip arthroplasty: a blinded randomised clinical trial. Int. Orthop. 41, 1113–1118 (2017). https://doi.org/10.1007/s00264-016-3320-2

    Article  Google Scholar 

  17. Davidson, J.A.: Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear. Clin. Orthop. Relat. Res. 294, 361–378 (1993)

    Article  Google Scholar 

  18. Ching, H.A., Choudhury, D., Nine, M.J., Abu Osman, N.A.: Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 15, 014402 (2014). https://doi.org/10.1088/1468-6996/15/1/014402

    Article  CAS  Google Scholar 

  19. Langhorn, J., Borjali, A., Hippensteel, E., Nelson, W., Raeymaekers, B.: Microtextured CoCrMo alloy for use in metal-on-polyethylene prosthetic joint bearings: Multi-directional wear and corrosion measurements. Tribol. Int. 124, 178–183 (2018). https://doi.org/10.1016/j.triboint.2018.04.007

    Article  CAS  Google Scholar 

  20. Borjali, A., Monson, K., Raeymaekers, B.: Friction between a polyethylene pin and a microtextured CoCrMo disc, and its correlation to polyethylene wear, as a function of sliding velocity and contact pressure, in the context of metal-on-polyethylene prosthetic hip implants. Tribol. Int. 127, 568–574 (2018). https://doi.org/10.1016/j.triboint.2018.07.005

    Article  CAS  Google Scholar 

  21. Borjali, A., Langhorn, J., Monson, K., Raeymaekers, B.: Using a patterned microtexture to reduce polyethylene wear in metal-on-polyethylene prosthetic bearing couples. Wear 392–393, 77–83 (2017). https://doi.org/10.1016/j.wear.2017.09.014

    Article  CAS  Google Scholar 

  22. Wang, M., Zhang, C., Wang, X.: The wear behavior of textured steel sliding against polymers. Materials (Basel) 10, 330 (2017). https://doi.org/10.3390/ma10040330

    Article  CAS  Google Scholar 

  23. López-Cervantes, A., Domínguez-López, I., Barceinas-Sánchez, J.D.O., García-García, A.L.: Effects of surface texturing on the performance of biocompatible UHMWPE as a bearing material during in vitro lubricated sliding/rolling motion. J. Mech. Behav. Biomed. Mater. 20, 45–53 (2013). https://doi.org/10.1016/j.jmbbm.2012.12.010

    Article  CAS  Google Scholar 

  24. Ito, H., Kaneda, K., Yuhta, T., Nishimura, I., Yasuda, K., Matsuno, T.: Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints. J. Arthoplasty 15, 332–338 (2000)

    Article  CAS  Google Scholar 

  25. Allen, Q., Raeymaekers, B.: Surface texturing of prosthetic hip implant bearing surfaces: a review. J. Tribol. 143, 040801 (2021). https://doi.org/10.1115/1.4048409

    Article  CAS  Google Scholar 

  26. Allen, Q., Raeymaekers, B.: Maximizing the lubricant film thickness between a rigid microtextured and a smooth deformable surface in relative motion, using a soft elasto-hydrodynamic lubrication model. J. Tribol. 142, 071802 (2020). https://doi.org/10.1115/1.4046291

    Article  Google Scholar 

  27. Su, B., Huang, L., Huang, W., Wang, X.: The load carrying capacity of textured sliding bearings with elastic deformation. Tribol. Int. 109, 86–96 (2017). https://doi.org/10.1016/j.triboint.2016.11.030

    Article  CAS  Google Scholar 

  28. Shinkarenko, A., Kligerman, Y., Etsion, I.: The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol. Int. 42, 284–292 (2009). https://doi.org/10.1016/j.triboint.2008.06.008

    Article  CAS  Google Scholar 

  29. Dowson, D., Taylor, C.M.: Fundamental aspects of cavitation in bearings. In: Dowson, D., Godet, M., Taylor, C.M. (eds.) Cavitation and related phenomena in lubrication, Proceedings of the 1st Leeds-Lyon symposium on tribology, pp. 15–26. Mechanical Engineering Publications Limited, Leeds (1974)

  30. Sommerfeld, A.: The hydrodynamic theory of lubrication friction. Zeitschrift für Angew. Math. und Phys. 50, 97–155 (1904)

    Google Scholar 

  31. Gumbel, L.: Monatsblatter Berlin Bezirksver, vol. 5, pp. 87–104. Verein Deutscher Ingenieure (VDI), Düsseldorf (1914)

    Google Scholar 

  32. Swift, H.W.: The stability of lubricating films in journal bearings. Minutes Proc. Inst. Civ. Eng. 233, 267–288 (1932)

    Google Scholar 

  33. Stieber, W.: Das Schwimmlager. Verein Deutscher Ingenieure (VDI), Verlag, Berlin (1933)

    Google Scholar 

  34. Jakobsson, B., Floberg, L.: The finite journal bearing considering vaporization. Report no. 190. Transactions of Chalmers University of Technology in Guthenberg, Sweden (1957)

  35. Olsson, K.-O.: Cavitation in dynamically loaded bearings. Report no. 308. Transactions of Chalmers University of Technology in Guthenberg, Sweden (1965)

  36. Elrod, H.G., Adams, M.I.: A computer program for cavitation and starvation problems. In: Dowson, D., Godet, M., Taylor, C.M. (eds.) Cavitation and related phenomena in lubrication, proceedings of the 1st Leeds-Lyon symposium on tribology, pp. 37–41. Mechanical Engineering Publications Limited, Leeds (1974)

    Google Scholar 

  37. Elrod, H.G.: A cavitation algorithm. J. Lubr. Technol. 103, 350–354 (1981)

    Article  Google Scholar 

  38. Vijayaraghavan, D., Keith, T.G.J.: Development and evaluation of a cavitation algorithm. Tribol. Trans. 32, 225–233 (1989)

    Article  Google Scholar 

  39. Fesanghary, M., Khonsari, M.M.: A modification of the switch function in the Elrod cavitation algorithm. J. Tribol. 133, 024501 (2011). https://doi.org/10.1115/1.4003484

    Article  Google Scholar 

  40. Miraskari, M., Hemmati, F., Jalali, A., Alqaradawi, M.Y., Gadala, M.S.: A robust modification to the universal cavitation algorithm in journal bearings. J. Tribol. 139, 031703 (2017). https://doi.org/10.1115/1.4034244

    Article  Google Scholar 

  41. Woloszynski, T., Podsiadlo, P., Stachowiak, G.W.: Efficient solution to the cavitation problem in hydrodynamic lubrication. Tribol. Lett. 58, 18 (2015). https://doi.org/10.1007/s11249-015-0487-4

    Article  Google Scholar 

  42. Biboulet, N., Lubrecht, A.A.: Efficient solver implementation for Reynolds equation with mass-conserving cavitation. Tribol. Int. 118, 295–300 (2018). https://doi.org/10.1016/j.triboint.2017.10.008

    Article  Google Scholar 

  43. Mezzadri, F., Galligani, E.: An inexact Newton method for solving complementarity problems in hydrodynamic lubrication. Calcolo 55, 1 (2018)

    Article  Google Scholar 

  44. Giacopini, M., Fowell, M.T., Dini, D., Strozzi, A.: A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. J. Tribol. 132, 041702 (2010). https://doi.org/10.1115/1.4002215

    Article  Google Scholar 

  45. Coyne, J.C., Elrod, H.G.: Conditions for the rupture of a lubricating film. Part I: Theoretical model. J. Lubr. Technol. 92, 451–456 (1970). https://doi.org/10.1115/1.3451441

    Article  Google Scholar 

  46. Coyne, J.C., Elrod, H.G.: Conditions for the rupture of a lubricating film- Part II New boundary conditions for Reynolds equation. J. Lubr. Technol. 93, 156–167 (1971). https://doi.org/10.1115/1.3451506

    Article  Google Scholar 

  47. Song, Y., Gu, C., Ren, X.: Development and validation of a gaseous cavitation model for hydrodynamic lubrication. Proc. Inst. Mech. Eng. J. 229, 1227–1238 (2015). https://doi.org/10.1177/1350650115576247

    Article  Google Scholar 

  48. Hirayama, T., Sakurai, T., Yabe, H.: A theoretical analysis considering cavitation occurrence in oil-lubricated spiral-grooved journal bearings with experimental verification. J. Tribol. 126, 490–498 (2004). https://doi.org/10.1115/1.1691436

    Article  Google Scholar 

  49. Bayada, G., Chupin, L.: Compressible fluid model for hydrodynamic lubrication cavitation. J. Tribol. 135, 041702 (2013). https://doi.org/10.1115/1.4024298

    Article  Google Scholar 

  50. Bayada, G.: From a compressible fluid model to new mass conserving cavitation algorithms. Tribol. Int. 71, 38–49 (2014). https://doi.org/10.1016/j.triboint.2013.10.014

    Article  Google Scholar 

  51. Etsion, I., Ludwig, L.P.: Observation of pressure variation in the cavitation region of submerged journal bearings. J. Lubr. Technol. 104, 157–163 (1982)

    Article  Google Scholar 

  52. Liu, H., Xu, H., Ellison, P.J., **, Z.: Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system. Tribol. Lett. 38, 325–336 (2010). https://doi.org/10.1007/s11249-010-9612-6

    Article  Google Scholar 

  53. Ausas, R., Ragot, P., Leiva, J., Jai, M., Bayada, G., Buscaglia, G.C.: The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J. Tribol. 129, 868–875 (2007). https://doi.org/10.1115/1.2768088

    Article  Google Scholar 

  54. Zhang, J., Meng, Y.: Direct observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces. Tribol. Lett. 46, 147–158 (2012). https://doi.org/10.1007/s11249-012-9935-6

    Article  CAS  Google Scholar 

  55. Wang, L., Wang, W., Wang, H., Ma, T., Hu, Y.: Numerical analysis on the factors affecting the hydrodynamic performance for the parallel surfaces with microtextures. J. Tribol. 136, 021702 (2014). https://doi.org/10.1115/1.4026060

    Article  Google Scholar 

  56. Qiu, Y., Khonsari, M.M.: On the prediction of cavitation in dimples using a mass-conservative algorithm. J. Tribol. 131, 041702 (2009). https://doi.org/10.1115/1.3176994

    Article  Google Scholar 

  57. Dobrica, M.B., Fillon, M., Pascovici, M.D., Cicone, T.: Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. Proc. Inst. Mech. Eng. J 224, 737–750 (2010)

    Article  Google Scholar 

  58. Jagatia, M., **, Z.M.: Analysis of elastohydrodynamic lubrication in a novel metal-on-metal hip joint replacement. Proc. Inst. Mech. Eng. H 216, 185–193 (2002)

    Article  CAS  Google Scholar 

  59. Qiu, M., Chyr, A., Sanders, A.P., Raeymaekers, B.: Designing prosthetic knee joints with bio-inspired bearing surfaces. Tribol. Int. 77, 106–110 (2014). https://doi.org/10.1016/j.triboint.2014.04.025

    Article  CAS  Google Scholar 

  60. Chyr, A., Qiu, M., Speltz, J.W., Jacobsen, R.L., Sanders, A.P., Raeymaekers, B.: A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints. Wear 315, 51–57 (2014). https://doi.org/10.1016/j.wear.2014.04.001

    Article  CAS  Google Scholar 

  61. Venner, C.H., Lubrecht, A.A.: Multilevel methods in lubrication. Elsevier, New York (2000)

    Google Scholar 

  62. Bergström, J.S., Kurtz, S.M., Rimnac, C.M., Edidin, A.A.: Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials 23, 2329–2343 (2002). https://doi.org/10.1016/S0142-9612(01)00367-2

    Article  Google Scholar 

  63. Wang, F.C., **, Z.M.: Elastohydrodynamic lubrication modeling of artificial hip joints under steady-state conditions. J. Tribol. 127, 729–739 (2005). https://doi.org/10.1115/1.1924460

    Article  CAS  Google Scholar 

  64. Saikko, V.: Effect of contact pressure on wear and friction of ultra-high molecular weight polyethylene in multidirectional sliding. Proc. Inst. Mech. Eng. H 220, 723–731 (2006)

    Article  CAS  Google Scholar 

  65. Grollman, A.: The vapor pressure of dog’s blood at body temperature. J. Gen. Physiol. (1928). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  66. Malik, S., Kakoty, S.K.: Analysis of dimple textured parallel and inclined slider bearing. Proc. Inst. Mech. Eng. J 228, 1343–1357 (2014). https://doi.org/10.1177/1350650114538779

    Article  Google Scholar 

  67. Nečas, D., Usami, H., Niimi, T., Sawae, Y., Křupka, I., Hartl, M.: Running-in friction of hip joint replacements can be significantly reduced: the effect of surface-textured acetabular cup. Friction 8, 1137–1152 (2020). https://doi.org/10.1007/s40544-019-0351-x

    Article  CAS  Google Scholar 

  68. Allen, Q., Raeymaekers, B.: The effect of texture floor profile on the lubricant film thickness in a textured hard-on-soft bearing with relevance to prosthetic hip implants. J. Tribol. 143, 021801 (2021). https://doi.org/10.1115/1.4047753

    Article  CAS  Google Scholar 

  69. Codrignani, A., Frohnapfel, B., Magagnato, F., Schreiber, P., Schneider, J., Gumbsch, P.: Numerical and experimental investigation of texture shape and position in the macroscopic contact. Tribol. Int. 122, 46–57 (2018). https://doi.org/10.1016/j.triboint.2018.02.001

    Article  Google Scholar 

  70. Jalali-Vahid, D., Jagatia, M., **, Z.M., Dowson, D.: Prediction of lubricating film thickness in UHMWPE hip joint replacements. J. Biomech. 34, 261–266 (2001). https://doi.org/10.1016/S0021-9290(00)00181-0

    Article  CAS  Google Scholar 

  71. Gao, L., Dowson, D., Hewson, R.W.: A numerical study of non-Newtonian transient elastohydrodynamic lubrication of metal-on-metal hip prostheses. Tribol. Int. 93, 486–494 (2016). https://doi.org/10.1016/j.triboint.2015.03.003

    Article  CAS  Google Scholar 

  72. Nečas, D., Vrbka, M., Galandakova, A., Křupka, I., Hartl, M.: On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J. Mech. Behav. Biomed. Mater. 89, 237–248 (2019). https://doi.org/10.1016/j.jmbbm.2018.09.022

    Article  Google Scholar 

  73. Zhang, H., Hua, M., Dong, G.N., Zhang, D.Y., Chin, K.S.: A mixed lubrication model for studying tribological behaviors of surface texturing. Tribol. Int. 93, 583–592 (2016). https://doi.org/10.1016/j.triboint.2015.03.027

    Article  Google Scholar 

  74. Myant, C., Cann, P.: In contact observation of model synovial fluid lubricating mechanisms. Tribol. Int. 63, 97–104 (2013). https://doi.org/10.1016/j.triboint.2012.04.029

    Article  CAS  Google Scholar 

  75. Qiu, M., Raeymaekers, B.: The load-carrying capacity and friction coefficient of incompressible textured parallel slider bearings with surface roughness inside the texture features. Proc. Inst. Mech. Eng. J 229, 547–556 (2015). https://doi.org/10.1177/1350650114545352

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases under grant 1R03AR066826-01A1.

Funding

This work was partially supported by the National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases under Grant 1R03AR066826-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Raeymaekers.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, Q., Raeymaekers, B. Soft EHL Simulations of Lubricant Film Thickness in Textured Hard-on-Soft Bearings Considering Different Cavitation Models, in the Context of Prosthetic Hip Implants. Tribol Lett 69, 118 (2021). https://doi.org/10.1007/s11249-021-01498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01498-8

Keywords

Navigation