Log in

Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

When a textured ring rotates relatively against the other texture-free ring in a parallel thrust bearing, cavitation of liquid lubricant may occur in the divergent zones of the dimples or grooves on the textured surface due to local pressure drops. The Reynolds and Jakobsson–Floberg–Olsson (JFO) models are two widely used cavitation models in hydrodynamic lubrication theory, where the former lacks mass conservation while the latter enforces it. In order to investigate the applicability of the two models to the hydrodynamic lubrication analysis of parallel thrust bearings with surface textures, comparison between experiment and simulation results has been carried out on parallel thrust bearings in terms of cavitation zone morphology in a groove, friction coefficient, and bearing clearance. The results have shown that the observed cavitation morphology in steady state is more similar to the prediction from the JFO model than that from the Reynolds model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

F :

Cavitation index

F f :

Friction force (N)

f c :

Friction coefficient

h :

Local film thickness (m)

h d :

Groove depth (m)

\( \bar{h} \) :

Dimensionless local film thickness = h/h d

h 0 :

Bearing clearance (m)

h 01, h 02 :

Guess of bearing clearance (m)

h 0g :

Average of h 01 and h 02 (m)

N :

Number of grooves

P :

Local pressure (Pa)

P c :

Cavitation pressure (Pa)

P ref :

Characteristic reference pressure (Pa)

\( \bar{P} \) :

Dimensionless local pressure = P/P 0

P 0 :

Ambient pressure (Pa)

p :

Nominal mean contact pressure = W/(r 2o  − r 2i )/π (Pa)

r :

Radial coordinate in a polar coordinate system (m)

r i, r o :

The inner and outer radii of the textured ring (m)

\( \bar{r} \) :

Dimensionless radial coordinate = r/r i

W :

Measured normal load (N)

W g :

Calculated normal load (N)

x, y :

Coordinates in a Cartesian coordinate system (m)

\( \bar{x},\bar{y} \) :

Dimensionless coordinates, \( \bar{x} = x/r_{i} ,\bar{y} = y/r_{\text{i}} \)

α :

Groove area ratio = ∆θ g/θ c

ϕ :

Dimensionless dependent variable

η :

Dynamic viscosity of lubricant (Pa s)

λ Rey, λ JFO :

Dimensionless parameters: \( \lambda_{\text{Rey}} = 6\eta \omega r_{i}^{2} /P_{0} /h_{d}^{2} ,\lambda_{\text{JFO}} = 6\eta \omega r_{i}^{2} /\left( {P_{\text{ref}} - P_{\text{c}} } \right)/h_{\text{d}}^{2} \)

θ :

Angular coordinate in a polar coordinate system (rad)

θ c :

Angle of a periodic sector (rad)

θ g :

Angle of the groove in a periodic sector (rad)

ρ :

Density (kg/m3): in the liquid film region, ρ = ρ c; in the cavitation region, ρ is the average density of the two-phase fluid of liquid and gas

ρ c :

Lubricant density at the cavitation pressure (kg/m3)

τ :

Viscous shear stress (Pa)

ω :

Angular velocity (rad/s)

i :

Index for the node number in the radial direction

j :

Index for the node number in the angular direction

k :

Iterative index

References

  1. Wang, X.L., Adachi, K., Otsuka, K., Kato, K.: Optimization of the surface texture for silicon carbide sliding in water. Appl. Surf. Sci. 253, 1282–1286 (2006)

    Article  CAS  Google Scholar 

  2. Wakuda, M., Yamauchi, Y., Kanzaki, S.: Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials. Precis. Eng. 26, 193–198 (2002)

    Article  Google Scholar 

  3. Etsion, I.: Improving tribological performance of mechanical components by laser surface texturing. Tribol. Lett. 17, 733–737 (2004)

    Article  CAS  Google Scholar 

  4. Etsion, I., Halperin, G.: A laser surface textured hydrostatic mechanical seal. Tribol. Trans. 45, 430–434 (2002)

    Article  CAS  Google Scholar 

  5. Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46, 397–403 (2003)

    Article  CAS  Google Scholar 

  6. Ryk, G., Kligerman, Y., Etsion, I.: Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol. Trans. 45, 444–449 (2002)

    Article  CAS  Google Scholar 

  7. Zhou, L., Kato, K., Vurens, G., Talke, F.E.: The effect of slider surface texture on flyability and lubricant migration under near contact conditions. Tribol. Int. 36, 269–277 (2003)

    Article  Google Scholar 

  8. Suh, N.P., Mosleh, M., Howard, P.S.: Control of friction. Wear 175, 151–158 (1994)

    Article  CAS  Google Scholar 

  9. Tian, H., Saka, N., Suh, N.P.: Boundary lubrication studies on undulated titanium surfaces. Tribol. Trans. 32, 289–296 (1989)

    Article  CAS  Google Scholar 

  10. Wakuda, M., Yamauchi, Y., Kanzaki, S., Yasuda, Y.: Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254, 356–363 (2003)

    Article  CAS  Google Scholar 

  11. Wang, Q.J., Zhu, D.: Virtual texturing: modeling the performance of lubricated contacts of engineered surfaces. J. Tribol. Trans. ASME 127, 722–728 (2005)

    Article  Google Scholar 

  12. Dowson, D., Taylor, C.M.: Cavitation in bearings. Ann. Rev. Fluid Mech. 11, 35–66 (1979)

    Article  Google Scholar 

  13. Brewe, D.E., Ball, J.H., Khonsari, M.M.: Current research in cavitating fluid films. NASA Technical Memorandum, AVSCOM 89-C-007 (1988)

  14. Heshmat, H.: The mechanism of cavitation in hydrodynamic lubrication. Tribol. Trans. 34, 177–186 (1991)

    Article  Google Scholar 

  15. Jakobsson, B.O., Floberg, L.: The finite journal bearing considering vaporization. Report No. 190, Chalmers University of Technology, Goteborg, Sweden (1957)

  16. Olsson, K.O.: Cavitation in dynamically loaded journal bearings. Report No. 308, Chalmers University of Technology, Goteborg, Sweden (1965)

  17. Etsion, I., Halperin, G., Brizmer, V., Kligerman, Y.: Experimental investigation of laser surface textured parallel thrust bearings. Tribol. Lett. 17, 295–300 (2004)

    Article  Google Scholar 

  18. Yu, H.W., Wang, X.L., Zhou, F.: Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol. Lett. 37, 123–130 (2010)

    Article  Google Scholar 

  19. Ausas, R., Ragot, P., Leiva, J., Jai, M., Bayada, G., Buscaglia, G.C.: The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J. Tribol. Trans. ASME 129, 868–875 (2007)

    Article  Google Scholar 

  20. Qiu, Y., Khonsari, M.M.: On the prediction of cavitation in dimples using a mass-conservative algorithm. J. Tribol. Trans. ASME 131, (2009)

  21. Costa, H.L., Hutchings, I.M.: Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 40, 1227–1238 (2007)

    Article  CAS  Google Scholar 

  22. Zhang, J.Y., Meng, Y.G.: A study of surface texturing of carbon steel by photochemical machining. J. Mater. Process. Technol. (under review)

  23. Harp, S.R., Salant, R.F.: An average flow model of rough surface lubrication with inter-asperity cavitation. J. Tribol. Trans. ASME 123, 134–143 (2001)

    Article  CAS  Google Scholar 

  24. Braun, M.J., Hannon, W.M.: Cavitation formation and modelling for fluid film bearings: a review. Proc. Inst. Mech. Eng. J 224, 839–863 (2010)

    Article  Google Scholar 

  25. Szeri, A.Z.: Tribology: friction, lubrication, and wear. Hemisphere Publishing Corp., New York (1980)

    Google Scholar 

  26. Elrod, H.G.: A cavitation algorithm. J. Lubr. Technol. Trans. ASME 103, 350–354 (1981)

    Google Scholar 

  27. Payvar, P., Salant, R.F.: A computational method for cavitation in a wavy mechanical seal. J. Tribol. Trans. ASME 114, 199–204 (1992)

    Article  CAS  Google Scholar 

  28. Wen, S.Z., Huang, P.: Principles of tribology. Tsinghua University Press, Bei**g (2002)

    Google Scholar 

  29. Yu, T.H., Sadeghi, F.: Groove effects on thrust washer lubrication. J. Tribol. Trans. ASME 123, 295–304 (2001)

    Article  Google Scholar 

  30. Etsion, I., Ludwig, L.P.: Observation of pressure variation in the cavitation region of submerged journal bearings. J. Lubr. Technol. Trans. ASME 104, 157–163 (1982)

    Article  Google Scholar 

  31. Groper, M., Etsion, I.: The effect of shear flow and dissolved gas diffusion on the cavitation in a submerged journal bearing. J. Tribol. Trans. ASME 123, 494–500 (2001)

    Article  Google Scholar 

  32. Groper, M., Etsion, I.: Reverse flow as a possible mechanism for cavitation pressure build-up in a submerged journal bearing. J. Tribol. Trans. ASME 124, 320–326 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China (NSFC, Grant Nos. 50823003 and 51021064) and the National Basic Resaerch Program of China with the grant No. 2012CB934101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Meng, Y. Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces. Tribol Lett 46, 147–158 (2012). https://doi.org/10.1007/s11249-012-9935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9935-6

Keywords

Navigation