Log in

Progress in Design Strategies for Photocatalytic Hydrogen Peroxide Generation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) emerges as an environmentally sustainable oxidant with great potential in diverse fields. However, the efficiency of H2O2 generation via photocatalysis remains suboptimal. Fundamentally, this inefficiency stems from the rapid recombination of photogenerated electron–hole pairs, limited surface or interface activity, restricted solar light absorption, and poor selectivity. Here, we discuss the fundamental mechanisms of photocatalytic H2O2 generation over the key material systems and highlight the most effective design strategies to address the unmet challenges faced by these systems. This review not only discusses fundamental insights into the mechanisms of photocatalytic H2O2 generation but also provides perspectives on future directions for the development of photocatalytic materials with high-efficiency and stability in generating H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No new data are generated from this study.

References

  1. Tang Z, Zhao P, Wang H, Liu Y, Bu W (2021) Biomedicine meets fenton chemistry. Chem Rev 121(4):1981–2019. https://doi.org/10.1021/acs.chemrev.0c00977

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Zhong X, Liu Z, Cheng L (2020) Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 35:100946. https://doi.org/10.1016/j.nantod.2020.100946

    Article  CAS  Google Scholar 

  3. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Efficient epoxidation of olefins with >/=99% selectivity and use of hydrogen peroxide. Science 300(5621):964–966. https://doi.org/10.1126/science.1083176

    Article  CAS  PubMed  Google Scholar 

  4. Bryliakov KP (2017) Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem Rev 117(17):11406–11459. https://doi.org/10.1021/acs.chemrev.7b00167

    Article  CAS  PubMed  Google Scholar 

  5. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hubner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res 139:118–131. https://doi.org/10.1016/j.watres.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  6. Xu J, Zheng X, Feng Z, Lu Z, Zhang Z, Huang W, Li Y, Vuckovic D, Li Y, Dai S, Chen G, Wang K, Wang H, Chen JK, Mitch W, Cui Y (2021) Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat Sustain 4:233–241. https://doi.org/10.1038/s41893-020-00635-w

    Article  PubMed  Google Scholar 

  7. Wang Y (2018) Room-temperature conversion of methane becomes true. Joule 2(8):1399–1401. https://doi.org/10.1016/j.joule.2018.07.013

    Article  Google Scholar 

  8. Pi L, Cai J, **ong L, Cui J, Hua H, Tang D, Mao X (2020) Generation of H2O2 by on-site activation of molecular dioxygen for environmental remediation applications: a review. Chem Eng J 389:123420. https://doi.org/10.1016/j.cej.2019.123420

    Article  CAS  Google Scholar 

  9. Campos-Martin JM, Blanco-Brieva G, Fierro JL (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl 45(42):6962–6984. https://doi.org/10.1002/anie.200503779

    Article  CAS  PubMed  Google Scholar 

  10. Teng Z, Zhang Q, Yang H, Kato K, Yang W, Lu Y-R, Liu S, Wang C, Yamakata A, Su C, Liu B, Ohno T (2021) Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat Catal 4(5):374–384. https://doi.org/10.1038/s41929-021-00605-1

    Article  CAS  Google Scholar 

  11. Lewis RJ, Hutchings GJ (2024) Selective oxidation using in situ-generated hydrogen peroxide. Acc Chem Res 57(1):106–119. https://doi.org/10.1021/acs.accounts.3c00581

    Article  CAS  PubMed  Google Scholar 

  12. Sato K, Aoki M, Takagi J, Zimmermann K, Noyori R (1999) A practical method for alcohol oxidation with aqueous hydrogen peroxide under organic solvent- and halide-free conditions. Bull Chem Soc Jpn 72(10):2287–2306. https://doi.org/10.1246/bcsj.72.2287

    Article  CAS  Google Scholar 

  13. Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X (2018) Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv Energy Mater 8(31):1801909. https://doi.org/10.1002/aenm.201801909

    Article  CAS  Google Scholar 

  14. Shi X, Back S, Gill TM, Siahrostami S, Zheng X (2021) Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7(1):38–63. https://doi.org/10.1016/j.chempr.2020.09.013

    Article  CAS  Google Scholar 

  15. Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ (2016) Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351(6276):965–968. https://doi.org/10.1126/science.aad5705

    Article  CAS  PubMed  Google Scholar 

  16. Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IE, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12(12):1137–1143. https://doi.org/10.1038/nmat3795

    Article  CAS  PubMed  Google Scholar 

  17. Edwards JK, Solsona B, Edwin NN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323(5917):1037–1041. https://doi.org/10.1126/science.1168980

    Article  CAS  PubMed  Google Scholar 

  18. Hou H, Zeng X, Zhang X (2020) Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed Engl 59(40):17356–17376. https://doi.org/10.1002/anie.201911609

    Article  CAS  PubMed  Google Scholar 

  19. Chen Z, Yao D, Chu C, Mao S (2023) Photocatalytic H2O2 production systems: design strategies and environmental applications. Chem Eng J 451:138489. https://doi.org/10.1016/j.cej.2022.138489

    Article  CAS  Google Scholar 

  20. Yu W, Hu C, Bai L, Tian N, Zhang Y, Huang H (2022) Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy 104:107906. https://doi.org/10.1016/j.nanoen.2022.107906

    Article  CAS  Google Scholar 

  21. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117(17):11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

    Article  CAS  PubMed  Google Scholar 

  22. Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45(13):3701–3730. https://doi.org/10.1039/c5cs00448a

    Article  CAS  PubMed  Google Scholar 

  23. Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H (2021) Photocatalysis enhanced by external fields. Angew Chem Int Ed Engl 60(30):16309–16328. https://doi.org/10.1002/anie.202009518

    Article  CAS  PubMed  Google Scholar 

  24. Zhao W, Yan P, Li B, Bahri M, Liu L, Zhou X, Clowes R, Browning ND, Wu Y, Ward JW, Cooper AI (2022) Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J Am Chem Soc 144(22):9902–9909. https://doi.org/10.1021/jacs.2c02666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan HL, Abdi FF, Ng YH (2019) Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem Soc Rev 48(5):1255–1271. https://doi.org/10.1039/c8cs00882e

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Ma T, Zhang T, Zhang Y, Huang H (2021) Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv Mater 33(10):e2005256. https://doi.org/10.1002/adma.202005256

    Article  CAS  PubMed  Google Scholar 

  27. Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T (2014) Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal 4(3):774–780. https://doi.org/10.1021/cs401208c

    Article  CAS  Google Scholar 

  28. Fukuzumi S, Lee Y-M, Nam W (2021) Recent progress in production and usage of hydrogen peroxide. Chin J Catal 42(8):1241–1252. https://doi.org/10.1016/s1872-2067(20)63767-6

    Article  CAS  Google Scholar 

  29. Wang L, Zhang J, Zhang Y, Yu H, Qu Y, Yu J (2022) Inorganic metal-oxide photocatalyst for H2O2 production. Small 18(8):e2104561. https://doi.org/10.1002/smll.202104561

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Pan C, Li J, Zhu Y (2023) Recent progress in nonsacrificial H2O2 generation using organic photocatalysts and in situ applications for environmental remediation. Acc Mater Res 5(1):76–88. https://doi.org/10.1021/accountsmr.3c00187

    Article  CAS  Google Scholar 

  31. Huy TH, Bui DP, Kang F, Wang YF, Liu SH, Thi CM, You SJ, Chang GM, Pham VV (2019) SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 215:323–332. https://doi.org/10.1016/j.chemosphere.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  32. Bui DP, Pham MT, Tran HH, Nguyen TD, Cao TM, Pham VV (2021) Revisiting the key optical and electrical characteristics in reporting the photocatalysis of semiconductors. ACS Omega 6(41):27379–27386. https://doi.org/10.1021/acsomega.1c04215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi H, Li Y, Wang X, Yu H, Yu J (2021) Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production. Appl Catal B 297:120414. https://doi.org/10.1016/j.apcatb.2021.120414

    Article  CAS  Google Scholar 

  34. Luo J, Liu Y, Fan C, Tang L, Yang S, Liu M, Wang M, Feng C, Ouyang X, Wang L, Xu L, Wang J, Yan M (2021) Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal 11(18):11440–11450. https://doi.org/10.1021/acscatal.1c03103

    Article  CAS  Google Scholar 

  35. Liu L-L, Chen F, Wu J-H, Ke M-K, Cui C, Chen J-J, Yu H-Q (2022) Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. Appl Catal B 302:120845. https://doi.org/10.1016/j.apcatb.2021.120845

    Article  CAS  Google Scholar 

  36. Zhao X, You Y, Huang S, Wu Y, Ma Y, Zhang G, Zhang Z (2020) Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br 2/g-C3N4 heterostructure under visible light. Appl Catal B 278:119251. https://doi.org/10.1016/j.apcatb.2020.119251

    Article  CAS  Google Scholar 

  37. Zhang P, Tong Y, Liu Y, Vequizo JJM, Sun H, Yang C, Yamakata A, Fan F, Lin W, Wang X, Choi W (2020) Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew Chem Int Ed Engl 59(37):16209–16217. https://doi.org/10.1002/anie.202006747

    Article  CAS  PubMed  Google Scholar 

  38. Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T (2015) Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal 5(5):3058–3066. https://doi.org/10.1021/acscatal.5b00408

    Article  CAS  Google Scholar 

  39. Pan Y, Liu X, Zhang W, Shao B, Liu Z, Liang Q, Wu T, He Q, Huang J, Peng Z, Liu Y, Zhao C (2022) Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chem Eng J 427:132032. https://doi.org/10.1016/j.cej.2021.132032

    Article  CAS  Google Scholar 

  40. Sun Y, Han L, Strasser P (2020) A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 49(18):6605–6631. https://doi.org/10.1039/d0cs00458h

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Wang L, Wan Y, Zhang Y, Qi Z, Wu X, Xu H (2020) Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: a new two-electron water oxidation pathway. Adv Mater 32(2):e1904433. https://doi.org/10.1002/adma.201904433

    Article  CAS  PubMed  Google Scholar 

  42. Cao S, Chan T-S, Lu Y-R, Shi X, Fu B, Wu Z, Li H, Liu K, Alzuabi S, Cheng P, Liu M, Li T, Chen X, Piao L (2020) Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 67:104287. https://doi.org/10.1016/j.nanoen.2019.104287

    Article  CAS  Google Scholar 

  43. Wang J, Yang L, Zhang L (2021) Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation. Chem Eng J 420:127639. https://doi.org/10.1016/j.cej.2020.127639

    Article  CAS  Google Scholar 

  44. Zhang J, Lang J, Wei Y, Zheng Q, Liu L, Hu Y-H, Zhou B, Yuan C, Long M (2021) Efficient photocatalytic H2O2 production from oxygen and pure water over graphitic carbon nitride decorated by oxidative red phosphorus. Appl Catal B 298:120522. https://doi.org/10.1016/j.apcatb.2021.120522

    Article  CAS  Google Scholar 

  45. Shiraishi Y, Kanazawa S, Kofuji Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T (2014) Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed Engl 53(49):13454–13459. https://doi.org/10.1002/anie.201407938

    Article  CAS  PubMed  Google Scholar 

  46. Hong Y, Cho Y, Go EM, Sharma P, Cho H, Lee B, Lee SM, Park SO, Ko M, Kwak SK, Yang C, Jang J-W (2021) Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. Chem Eng J 418:129346. https://doi.org/10.1016/j.cej.2021.129346

    Article  CAS  Google Scholar 

  47. Ge T, ** X, Cao J, Chen Z, Xu Y, **e H, Su F, Li X, Lan Q, Ye L (2021) Giant enhanced photocatalytic H2O2 production over hollow hexagonal prisms carbon nitride. J Taiwan Inst Chem Eng 129:104–111. https://doi.org/10.1016/j.jtice.2021.09.036

    Article  CAS  Google Scholar 

  48. Liu W, Song C, Kou M, Wang Y, Deng Y, Shimada T, Ye L (2021) Fabrication of ultra-thin g-C3N4 nanoplates for efficient visible-light photocatalytic H2O2 production via two-electron oxygen reduction. Chem Eng J 425:130615. https://doi.org/10.1016/j.cej.2021.130615

    Article  CAS  Google Scholar 

  49. Yu X, Hu C, Hao D, Liu G, Xu R, Zhu X, Yu X, Ma Y, Ma L (2021) Tubular carbon nitride with hierarchical network: localized charge carrier generation and reduced charge recombination for high-performance photocatalysis of H2 and H2O2 production. Solar RRL 5(5):1–10. https://doi.org/10.1002/solr.202000827

    Article  CAS  Google Scholar 

  50. Wang R, Zhang X, Li F, Cao D, Pu M, Han D, Yang J, **ang X (2018) Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts. J Energy Chem 27(2):343–350. https://doi.org/10.1016/j.jechem.2017.12.014

    Article  Google Scholar 

  51. Xue L, Sun H, Wu Q, Yao W (2022) P-doped melon-carbon nitride for efficient photocatalytic H2O2 production. J Colloid Interface Sci 615:87–94. https://doi.org/10.1016/j.jcis.2022.01.107

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Yu C, Lang J, Zhou Y, Zhou B, Hu YH, Long M (2020) Modulation of Lewis acidic-basic sites for efficient photocatalytic H2O2 production over potassium intercalated tri-s-triazine materials. Appl Catal B 277:119225. https://doi.org/10.1016/j.apcatb.2020.119225

    Article  CAS  Google Scholar 

  53. Tian J, Wang D, Li S, Pei Y, Qiao M, Li Z-H, Zhang J, Zong B (2019) KOH-assisted band engineering of polymeric carbon nitride for visible light photocatalytic oxygen reduction to hydrogen peroxide. ACS Sustain Chem Eng 8(1):594–603. https://doi.org/10.1021/acssuschemeng.9b06134

    Article  CAS  Google Scholar 

  54. Chen C, Qiu G, Wang T, Zheng Z, Huang M, Li B (2021) Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. J Colloid Interface Sci 592:1–12. https://doi.org/10.1016/j.jcis.2021.02.036

    Article  CAS  PubMed  Google Scholar 

  55. Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal 2(4):599–603. https://doi.org/10.1021/cs2006873

    Article  CAS  Google Scholar 

  56. Liu C, Bao T, Yuan L, Zhang C, Wang J, Wan J, Yu C (2021) Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters. Adv Funct Mater 32(15):2111404. https://doi.org/10.1002/adfm.202111404

    Article  CAS  Google Scholar 

  57. Han G, Xu F, Cheng B, Li Y, Yu J, Zhang L (2022) Enhanced photocatalytic H2O2 production over inverse opal ZnO@Polydopamine S-scheme heterojunctions. Acta Physico Chimica Sinica 38(7):2112037. https://doi.org/10.3866/pku.Whxb202112037

    Article  Google Scholar 

  58. Zhang Y, Qiu J, Zhu B, Fedin MV, Cheng B, Yu J, Zhang L (2022) ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance. Chem Eng J 444:136584. https://doi.org/10.1016/j.cej.2022.136584

    Article  CAS  Google Scholar 

  59. Chen X, Kuwahara Y, Mori K, Louis C, Yamashita H (2020) A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J Mater Chem A 8(4):1904–1910. https://doi.org/10.1039/c9ta11120d

    Article  CAS  Google Scholar 

  60. Chen X, Kuwahara Y, Mori K, Louis C, Yamashita H (2021) Heterometallic and hydrophobic metal-organic frameworks as durable photocatalysts for boosting hydrogen peroxide production in a two-phase system. ACS Appl Energy Mater 4(5):4823–4830. https://doi.org/10.1021/acsaem.1c00371

    Article  CAS  Google Scholar 

  61. Wu S, Yu H, Chen S, Quan X (2020) Enhanced photocatalytic h2o2 production over carbon nitride by do** and defect engineering. ACS Catal 10(24):14380–14389. https://doi.org/10.1021/acscatal.0c03359

    Article  CAS  Google Scholar 

  62. Luo J, Fan C, Tang L, Liu Y, Gong Z, Wu T, Zhen X, Feng C, Feng H, Wang L, Xu L, Yan M (2022) Reveal Brønsted–Evans–Polanyi relation and attack mechanisms of reactive oxygen species for photocatalytic H2O2 production. Appl Catal B 301:120757. https://doi.org/10.1016/j.apcatb.2021.120757

    Article  CAS  Google Scholar 

  63. Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y (2018) Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ Sci 11(9):2581–2589. https://doi.org/10.1039/c8ee01316k

    Article  CAS  Google Scholar 

  64. Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H (2019) Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew Chem Int Ed Engl 58(16):5402–5406. https://doi.org/10.1002/anie.201901961

    Article  CAS  PubMed  Google Scholar 

  65. Yu H, Li J, Zhang Y, Yang S, Han K, Dong F, Ma T, Huang H (2019) Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew Chem Int Ed Engl 58(12):3880–3884. https://doi.org/10.1002/anie.201813967

    Article  CAS  PubMed  Google Scholar 

  66. Liu J, Zou Y, ** B, Zhang K, Park JH (2019) Hydrogen peroxide production from solar water oxidation. ACS Energy Lett 4(12):3018–3027. https://doi.org/10.1021/acsenergylett.9b02199

    Article  CAS  Google Scholar 

  67. Truong TK, Van Doan T, Tran HH, Van Le H, Lam VQ, Tran HN, Cao TM, Van Pham V (2019) Effect of Cr do** on visible-light-driven photocatalytic activity of ZnO nanoparticles. J Electron Mater 48(11):7378–7388. https://doi.org/10.1007/s11664-019-07566-z

    Article  CAS  Google Scholar 

  68. Viet PV, Hong Huy T, Tan Sang T, Nguyet HM, Thi CM (2019) One-pot hydrothermal synthesis of Si doped TiO2 nanotubes from commercial material sources for visible light-driven photocatalytic activity. Mater Res Express 6(5):055006. https://doi.org/10.1088/2053-1591/aad8a0

    Article  CAS  Google Scholar 

  69. Du R, ** in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production. Chem Eng J 441:135999. https://doi.org/10.1016/j.cej.2022.135999

    Article  CAS  Google Scholar 

  70. You Q, Zhang C, Cao M, Wang B, Huang J, Wang Y, Deng S, Yu G (2023) Defects controlling, elements do**, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production. Appl Catal B 321:121941. https://doi.org/10.1016/j.apcatb.2022.121941

    Article  CAS  Google Scholar 

  71. Qu X, Hu S, Bai J, Li P, Lu G, Kang X (2018) Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method. J Mater Sci Technol 34(10):1932–1938. https://doi.org/10.1016/j.jmst.2018.04.019

    Article  CAS  Google Scholar 

  72. Teng Z, Cai W, Liu S, Wang C, Zhang Q, Chenliang S, Ohno T (2020) Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl Catal B 271:118917. https://doi.org/10.1016/j.apcatb.2020.118917

    Article  CAS  Google Scholar 

  73. **e Y, Li Y, Huang Z, Zhang J, Jia X, Wang X-S, Ye J (2020) Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl Catal B 265:118581. https://doi.org/10.1016/j.apcatb.2019.118581

    Article  CAS  Google Scholar 

  74. Chen X, Zhang W, Zhang L, Feng L, Zhang C, Jiang J, Yan T, Wang H (2020) Sacrificial agent-free photocatalytic H2O2 evolution via two-electron oxygen reduction using a ternary α-Fe2O3/CQD@g-C3N4 photocatalyst with broad-spectrum response. J Mater Chem A 8(36):18816–18825. https://doi.org/10.1039/d0ta05753c

    Article  CAS  Google Scholar 

  75. Li Y, Zhao Y, Nie H, Wei K, Cao J, Huang H, Shao M, Liu Y, Kang Z (2021) Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J Mater Chem A 9(1):515–522. https://doi.org/10.1039/d0ta10231h

    Article  CAS  Google Scholar 

  76. Kim H-i, Kwon OS, Kim S, Choi W, Kim J-H (2016) Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy Environ Sci 9(3):1063–1073. https://doi.org/10.1039/c5ee03115j

    Article  CAS  Google Scholar 

  77. Zhang C, Huang J, Guo X, Da X, Dai Z, Hassan M, Yu Y, Wang X, Zhou Q (2023) NIR light-driven photocatalytic NAD(P)H oxidation and H2O2 generation in situ for enhanced chemodynamic therapy and immune response. Nano Today 50:101824. https://doi.org/10.1016/j.nantod.2023.101824

    Article  CAS  Google Scholar 

  78. Teranishi M, Hoshino R, Naya S, Tada H (2016) Gold-nanoparticle-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen. Angew Chem Int Ed Engl 55(41):12773–12777. https://doi.org/10.1002/anie.201606734

    Article  CAS  PubMed  Google Scholar 

  79. Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FP, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537(7620):382–386. https://doi.org/10.1038/nature19060

    Article  CAS  PubMed  Google Scholar 

  80. Zeng Z, Quan X, Yu H, Chen S, Zhang S (2019) Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: enhanced charge collection and separation for efficient photocatalysis. J Catal 375:361–370. https://doi.org/10.1016/j.jcat.2019.06.019

    Article  CAS  Google Scholar 

  81. Feng C, Tang L, Deng Y, Wang J, Liu Y, Ouyang X, Yang H, Yu J, Wang J (2021) A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl Catal B 281:119539. https://doi.org/10.1016/j.apcatb.2020.119539

    Article  CAS  Google Scholar 

  82. Zhou L, Feng J, Qiu B, Zhou Y, Lei J, **ng M, Wang L, Zhou Y, Liu Y, Zhang J (2020) Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl Catal B 267:118396. https://doi.org/10.1016/j.apcatb.2019.118396

    Article  CAS  Google Scholar 

  83. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B 190:26–35. https://doi.org/10.1016/j.apcatb.2016.03.004

    Article  CAS  Google Scholar 

  84. Shi L, Yang L, Zhou W, Liu Y, Yin L, Hai X, Song H, Ye J (2018) Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14(9):1703142. https://doi.org/10.1002/smll.201703142

    Article  CAS  Google Scholar 

  85. Zhu Z, Pan H, Murugananthan M, Gong J, Zhang Y (2018) Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl Catal B 232:19–25. https://doi.org/10.1016/j.apcatb.2018.03.035

    Article  CAS  Google Scholar 

  86. Zhang X, Ma P, Wang C, Gan L, Chen X, Zhang P, Wang Y, Li H, Wang L, Zhou X, Zheng K (2022) Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ Sci 15(2):830–842. https://doi.org/10.1039/d1ee02369a

    Article  CAS  Google Scholar 

  87. Zhang P, Sun D, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi W (2019) Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 10(1):940. https://doi.org/10.1038/s41467-019-08731-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shiraishi Y, Takii T, Hagi T, Mori S, Kofuji Y, Kitagawa Y, Tanaka S, Ichikawa S, Hirai T (2019) Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat Mater 18(9):985–993. https://doi.org/10.1038/s41563-019-0398-0

    Article  CAS  PubMed  Google Scholar 

  89. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196. https://doi.org/10.1039/b802262n

    Article  CAS  PubMed  Google Scholar 

  90. Bui PD, Tran HH, Kang F, Wang Y-F, Cao TM, You S-J, Vu NH, Pham VV (2018) Insight into the photocatalytic mechanism of tin dioxide/polyaniline nanocomposites for NO degradation under solar light. ACS Appl Nano Mater 1(10):5786–5794. https://doi.org/10.1021/acsanm.8b01445

    Article  CAS  Google Scholar 

  91. Pham VV, Bui DP, Tran HH, Cao MT, Nguyen TK, Kim YS, Le VH (2018) Photoreduction route for Cu2O/TiO2 nanotubes junction for enhanced photocatalytic activity. RSC Adv 8(22):12420–12427. https://doi.org/10.1039/c8ra01363b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, **ong W (2019) Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl Catal B 245:87–99. https://doi.org/10.1016/j.apcatb.2018.12.049

    Article  CAS  Google Scholar 

  93. Liu Y, Zhao Y, Wu Q, Wang X, Nie H, Zhou Y, Huang H, Shao M, Liu Y, Kang Z (2021) Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chem Eng J 409:128184. https://doi.org/10.1016/j.cej.2020.128184

    Article  CAS  Google Scholar 

  94. Wu Q, Cao J, Wang X, Liu Y, Zhao Y, Wang H, Liu Y, Huang H, Liao F, Shao M, Kang Z (2021) A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat Commun 12(1):483. https://doi.org/10.1038/s41467-020-20823-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim K, Park J, Kim H, Jung GY, Kim M-G (2019) Solid-phase photocatalysts: physical vapor deposition of Au nanoislands on porous TiO2 films for millimolar H2O2 production within a few minutes. ACS Catal 9(10):9206–9211. https://doi.org/10.1021/acscatal.9b02269

    Article  CAS  Google Scholar 

  96. Ye YX, Pan J, **e F, Gong L, Huang S, Ke Z, Zhu F, Xu J, Ouyang G (2021) Highly efficient photosynthesis of hydrogen peroxide in ambient conditions. Proc Natl Acad Sci USA 118(16):e2103964118. https://doi.org/10.1073/pnas.2103964118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cai J, Huang J, Wang S, Iocozzia J, Sun Z, Sun J, Yang Y, Lai Y, Lin Z (2019) Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv Mater 31(15):e1806314. https://doi.org/10.1002/adma.201806314

    Article  CAS  PubMed  Google Scholar 

  98. Wang Y, Wang Y, Zhao J, Chen M, Huang X, Xu Y (2021) Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl Catal B 284:119691. https://doi.org/10.1016/j.apcatb.2020.119691

    Article  CAS  Google Scholar 

  99. Plauck A, Stangland EE, Dumesic JA, Mavrikakis M (2016) Active sites and mechanisms for H2O2 decomposition over Pd catalysts. Proc Natl Acad Sci USA 113(14):E1973-1982. https://doi.org/10.1073/pnas.1602172113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He F, Li K, Yin C, Wang Y, Tang H, Wu Z (2017) Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. Carbon 114:619–627. https://doi.org/10.1016/j.carbon.2016.12.061

    Article  CAS  Google Scholar 

  101. Teranishi M, Naya S, Tada H (2010) In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. J Am Chem Soc 132(23):7850–7851. https://doi.org/10.1021/ja102651g

    Article  CAS  PubMed  Google Scholar 

  102. Moon G-h, Kim W, Bokare AD, Sung N-e, Choi W (2014) Solar production of H2O2 reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ Sci 7(12):4023–4028. https://doi.org/10.1039/c4ee02757d

    Article  CAS  Google Scholar 

  103. Fuku K, Takioka R, Iwamura K, Todoroki M, Sayama K, Ikenaga N (2020) Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl Catal B 272:119003. https://doi.org/10.1016/j.apcatb.2020.119003

    Article  CAS  Google Scholar 

  104. Lee JH, Cho H, Park SO, Hwang JM, Hong Y, Sharma P, Jeon WC, Cho Y, Yang C, Kwak SK, Moon HR, Jang J-W (2021) High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl Catal B 284:119690. https://doi.org/10.1016/j.apcatb.2020.119690

    Article  CAS  Google Scholar 

  105. Li L, Xu L, Hu Z, Yu JC (2021) Enhanced mass transfer of oxygen through a gas–liquid–solid interface for photocatalytic hydrogen peroxide production. Adv Funct Mater 31(52):2106120. https://doi.org/10.1002/adfm.202106120

    Article  CAS  Google Scholar 

  106. Tran HH, Lee D, Riassetto D (2023) Wetting ridges on slippery liquid-infused porous surfaces. Rep Prog Phys 86(6):066601. https://doi.org/10.1088/1361-6633/acc87a

    Article  Google Scholar 

  107. Tran HH, Kim Y, Ternon C, Langlet M, Riassetto D, Lee D (2021) Lubricant depletion-resistant slippery liquid-infused porous surfaces via capillary rise lubrication of nanowire array. Adv Mater Interfaces 8(7):2002058. https://doi.org/10.1002/admi.202002058

    Article  CAS  Google Scholar 

  108. Tran HH, Venkatesh RB, Kim Y, Lee D, Riassetto D (2019) Multifunctional composite films with vertically aligned ZnO nanowires by leaching-enabled capillary rise infiltration. Nanoscale 11(45):22099–22107. https://doi.org/10.1039/c9nr07183k

    Article  CAS  PubMed  Google Scholar 

  109. Chen L, Li S, Yang Z, Chen C, Chu C, Chen B (2022) Enhanced photocatalytic hydrogen peroxide production at a solid-liquid-air interface via microenvironment engineering. Appl Catal B 305:121066. https://doi.org/10.1016/j.apcatb.2022.121066

    Article  CAS  Google Scholar 

  110. Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11(41):19214–19224. https://doi.org/10.1039/c9nr05647e

    Article  CAS  PubMed  Google Scholar 

  111. Zhou L, Lei J, Wang F, Wang L, Hoffmann MR, Liu Y, In S-I, Zhang J (2021) Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production. Appl Catal B 288:119993. https://doi.org/10.1016/j.apcatb.2021.119993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support from HUTECH University, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Huy Tran.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H.H., Cao, T.M. & Van Pham, V. Progress in Design Strategies for Photocatalytic Hydrogen Peroxide Generation. Top Catal (2024). https://doi.org/10.1007/s11244-024-01936-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01936-6

Keywords

Navigation