Log in

Coupling Ambient Pressure X-ray Photoelectron Spectroscopy with Density Functional Theory to Study Complex Surface Chemistry and Catalysis

  • Original Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ambient pressure X-ray photoelectron spectroscopy (APXPS) experiments narrow the pressure and materials gaps between UHV surface science experiments and applications. Upon closing these gaps, ambiguity can enter the analysis of the spectra due to overlap** peaks from different elements or functional groups of both the sample and the gas phase. Additionally, reaction intermediates and mechanisms are often inaccessible from interpretation of APXPS data alone. In many cases, these issues can be overcome with the aid of density functional theory (DFT) calculations. Here, we outline our process of combining DFT calculations with APXPS experiments by describing our recent investigations of the adsorption of dimethyl methylphosphonate (DMMP) on MoO3 and CuO. We begin by showing the importance of the characterization of the isolated gas phase molecule before adsorption onto a surface. In particular, strong agreement between theory and experiment helps identify plausible decomposition pathways of the isolated molecule and provides a baseline for interpretation of spectra showing evidence of DMMP interaction with surfaces. The intact adsorption of DMMP on MoO3 offers an illustration of how moving beyond pristine single crystalline surfaces in calculations can enable better modeling of experimental trends that result from surface defects. Studies of DMMP adsorption on CuO exemplify the powerful synergy of APXPS combined with DFT for elucidation of complex reaction mechanisms on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from [16,17,18]. Copyright 2016 and 2017 American Chemical Society

Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from [17]. Copyright 2016 American Chemical Society

Fig. 6
Fig. 7
Fig. 8

Reproduced with permission from [18]. Copyright 2017 American Chemical Society

Similar content being viewed by others

References

  1. Hüfner S (2003) Photoelectron spectroscopy: principles and applications. Springer, Berlin

    Book  Google Scholar 

  2. Head AR, Bluhm H (2016) Ambient pressure X-ray. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham

    Google Scholar 

  3. Joyner RW, Roberts MW, Yates K (1979) A “high-pressure” electron spectrometer for surface studies. Surf Sci 87:501–509

    Article  CAS  Google Scholar 

  4. Trotochaud L, Head AR, Karslıoğlu O, Kyhl L, Bluhm H (2017) Ambient pressure photoelectron spectroscopy: practical considerations and experimental frontiers. J Phys 29:053002

    Google Scholar 

  5. Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron MA (2002) Differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum 73:3872–3877

    Article  CAS  Google Scholar 

  6. Ruppender HJ, Grunze M, Kong CW, Wilmers, M (1990) In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf Interface Anal 15:245–253

    Article  CAS  Google Scholar 

  7. Salmeron M, Schlögl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  8. Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42:5833–5857

    Article  CAS  Google Scholar 

  9. Head AR, Karslıoǧlu O, Gerber T, Yu Y, Trotochaud L, Raso J, Kerger P, Bluhm H (2017) CO adsorption on Pd(100) studied by multimodal ambient pressure X-ray photoelectron and infrared reflection absorption spectroscopies. Surf Sci 665:51–55

    Article  CAS  Google Scholar 

  10. Gaberle J, Gao DZ, Watkins MB, Shluger AL (2016) Calculating the entropy loss on adsorption of organic molecules at insulating surfaces. J Phys Chem C 120:3913–3921

    Article  CAS  Google Scholar 

  11. Schwarz A, Gao DZ, Lämmle K, Grenz J, Watkins MB, Shluger AL, Wiesendanger R (2013) Determining adsorption geometry, bonding, and translational pathways of a metal–organic complex on an oxide surface: Co-Salen on NiO(001). J Phys Chem C 117:1105–1112

    Article  CAS  Google Scholar 

  12. Tsyshevsky RV, Rashkeev SN, Kuklja MM (2015) Defect states at organic-inorganic interfaces: insight from first principles calculations for pentaerythritol tetranitrate on MgO surface. Surf Sci 637:19–28

    Article  Google Scholar 

  13. Henkelman G, Uberuaga BP, Jónsson HA (2000) Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  14. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  15. Köhler L, Kresse G (2004) Density functional study of CO on Rh(111). Phys Rev B 70:165405

    Article  Google Scholar 

  16. Head AR, Tsyshevsky R, Trotochaud L, Eichhorn B, Kuklja MM, Bluhm H (2016) Electron spectroscopy and computational studies of dimethyl methylphosphonate. J Phys Chem A 120:1985–1991

    Article  CAS  Google Scholar 

  17. Head AR, Tsyshevsky R, Trotochaud L, Yu Y, Kyhl L, Karslıoǧlu O, Kuklja MM, Bluhm H (2016) Adsorption of dimethyl methylphosphonate on MoO3: the role of oxygen vacancies. J Phys Chem C 120:29077–29088

    Article  CAS  Google Scholar 

  18. Trotochaud L et al (2017) Spectroscopic and computational investigation of room-temperature decomposition of a chemical warfare agent simulant on polycrystalline cupric oxide. Chem Mater 29:7483–7496

    Article  CAS  Google Scholar 

  19. Head AR et al (2017) Thermal desorption of dimethyl methylphosphonate from MoO3. Catal Struct React 3:112–118

    Article  CAS  Google Scholar 

  20. Siegbahn K (1969) ESCA applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  24. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  25. Perry WB, Schaaf TF, Jolly WL (1975) X-ray photoelectron spectroscopic study of charge distributions in tetracovalent compounds of nitrogen and phosphorus. J Am Chem Soc 97:4899–4905

    Article  CAS  Google Scholar 

  26. Avanzino SC, Jolly WL, Lazarus MS, Perry WB, Rietz RR, Schaaf TF (1975) Evidence for hyperconjugation from an X-ray photoelectron spectroscopic study of isoelectronic compounds. Inorg Chem 14:1595–1597

    Article  CAS  Google Scholar 

  27. Jolly WL, Bomben KD, Eyermann CJ (1984) Core-electron binding energies for gaseous atoms and molecules. At Data Nucl Data Tables 31(1):433–493

    Article  CAS  Google Scholar 

  28. Mitchell MB, Sheinker VN, Mintz EA (1997) Adsorption and decomposition of dimethyl methylphosphonate on metal oxides. J Phys Chem B 101:11192–11203

    Article  CAS  Google Scholar 

  29. Rusu CN, Yates JT Jr (2000) Adsorption and decomposition of dimethyl methylphosphonate on TiO2. J Phys Chem B 104:12292–12298

    Article  CAS  Google Scholar 

  30. Negishi H, Negishi S, Kuroiwa Y, Sato N, Aoyagi S (2004) Anisotropic thermal expansion of layered MoO3 crystals. Phys Rev B 69:064111

    Article  Google Scholar 

  31. Firment LE, Ferretti A (1983) Stoichiometric and oxygen deficient MoO3(010) surfaces. Surf Sci 129:155–176

    Article  CAS  Google Scholar 

  32. Inzani K, Grande T, Vullum-Bruer F, Selbach SM (2016) A van der Waals density functional study of MoO3 and its oxygen vacancies. J Phys Chem C 120:8959–8968

    Article  CAS  Google Scholar 

  33. Coquet R, Willock DJ (2005) The (010) surface of α-MoO3, a DFT + U study. Phys Chem Chem Phys 7:3819–3828

    Article  CAS  Google Scholar 

  34. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  35. Hu J, Li D, Lu JG, Wu R (2010) Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires. J Phys Chem C 114:17120–17126

    Article  CAS  Google Scholar 

  36. Maimaiti Y, Nolan M, Elliott SD (2014) Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys Chem Chem Phys 16:3036–3046

    Article  CAS  Google Scholar 

  37. Chen DA, Ratliff JS, Hu X, Gordon WO, Senanayake SD, Mullins DR (2010) Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films. Surf Sci 604:574–587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Department of Defense through the Defense Threat Reduction Agency (Grant HDTRA11510005). R.T. and M.M.K acknowledge support from NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources, as well as computational resources at the Maryland Advanced Research Computing Center (MARCC) and University of Maryland supercomputing resources (http://hpcc.umd.edu). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. MMK is grateful to the Office of the Director of National Science Foundation for support under the Independent Research and Development program. Any appearance of findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF and other funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Bluhm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Head, A.R., Trotochaud, L., Tsyshevsky, R. et al. Coupling Ambient Pressure X-ray Photoelectron Spectroscopy with Density Functional Theory to Study Complex Surface Chemistry and Catalysis. Top Catal 61, 2175–2184 (2018). https://doi.org/10.1007/s11244-018-1062-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1062-7

Keywords

Navigation