Log in

Influence of Catalytic Activity of CeO2/SnO2 Nanocomposites on Sensitivity to Hydrogen of Sensors on Their Base

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Addition of cerium to sensor nanomaterials based on tin dioxide leads to a significant increase in their catalytic activity, which is a reason of increasing the sensitivity to H2 of obtained adsorption semiconductor sensors. Mechanism proposed for the surface heterogeneous catalytic hydrogen oxidation reaction includes both reactions involving chemisorbed oxygen at the interface between tin dioxide nanoparticles and introduced cerium dioxide and reactions involving CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. I. H. Kadhim, H. Abu Hassan, and Q. N. Abdullah, Nano-Micro Lett., 8, 20-28 (2016).

    Article  Google Scholar 

  2. J. Watson, K. Ihokura, and G. S. V. Coles, Meas. Sci. Technol., 4, 711-719 (1993).

    Article  Google Scholar 

  3. Z. Bin, Y. Chen-bo, Z. Zili, et al., Sensors Actuators B, 178, 418-425 (2013).

    Article  Google Scholar 

  4. N. Barsan, D. Koziej, and U. Weimar, Sensors Actuators B, 121, 18-35 (2007).

    Article  CAS  Google Scholar 

  5. Y. Luo, C. Zhang, B. Zheng, et al., Int. J. Hydrogen Energy, 42, No. 31, 20386-20397 (2017).

    Article  CAS  Google Scholar 

  6. N. Yamazoe and N. Miura, Chem. Sens. Technol., 4, 20-41 (1992).

    Google Scholar 

  7. E. Aneggi, M. Boaro, S. Colussi, et al., Handbook on the Physics and Chemistry of Rare Earths, 50, 209-242 (2016).

    Article  Google Scholar 

  8. P. Patsalas, S. Logothetidis, L. Sygellou, and S. Kennou, Phys. Rev. B, 68, No. 3, 035104-1–035104-13 (2003).

    Article  Google Scholar 

  9. L. P. Oleksenko, N. P. Maksymovych, E. V. Sokovykh, et al., Sensors Actuators B, 196, 298-305 (2014).

    Article  CAS  Google Scholar 

  10. E. V. Sokovykh, L. P. Oleksenko, N. P. Maksymovych, and I. P. Matushko, J. Thermal Anal. Calorim., 121, No. 3, 1159-1165 (2015).

    Article  CAS  Google Scholar 

  11. L. P. Oleksenko, N. P. Maksymovych, I. P. Matushko, and N. V. Chubaevskaya, Russ. J. Phys. Chem. A, 89, No. 3, 472-476 (2015).

    Article  CAS  Google Scholar 

  12. E. V. Sokovykh, L. P. Oleksenko, N. P. Maksymovych, and I. P. Matushko, Nanoscale Res. Lett., 12, 383-390 (2017).

    Article  CAS  Google Scholar 

  13. G. V. Fedorenko, L. P. Oleksenko, N. P. Maksymovych, and I. P. Matushko, Russ. J. Phys. Chem. A, 89, No. 12, 2259-2262 (2015).

    Article  CAS  Google Scholar 

  14. L. P. Oleksenko, N. P. Maksymovych, E. V. Sokovykh, and I. P. Matushko, Teor. Éksp. Khim., 50, No. 2, 113-118 (2014). [Theor. Exp. Chem., 50, No. 2, 115-120 (2014) (English translation).]

  15. ASTM Diffraction Data Cards of X-Ray Diffraction Data, American Society for Testing and Materials, Philadelphia (1946-1996).

  16. T. Jaramillo, K. Jørgensen, J. Bonde, et al., Science, 317, 100-102 (2007).

    Article  CAS  Google Scholar 

  17. A. S. Ivanova, Kinet. Katal., 50, No. 6, 831-849 (2009).

    Article  Google Scholar 

  18. S. Seal and S. Shukla, JOM, 54, 35-38 (2002).

    Article  CAS  Google Scholar 

  19. T. V. Belysheva, E. Yu. Spiridonova, V. F. Gromov, et al., Zh. Fiz. Khim., 84, No. 12, 2312-2318 (2010).

    Google Scholar 

  20. J. Hermann, E. Ramaroson, J. Tempere, and M. Guilleux, Appl. Catal., 53, 117-134 (1989).

    Article  Google Scholar 

  21. X. H. Zhang, G. J. Li, and S. Kawi, Sensors Actuators B, 60, 64-70 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Oleksenko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 54, No. 4, pp. 217-222, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksenko, L.P., Maksymovych, N.P. & Arinarkhova, H.O. Influence of Catalytic Activity of CeO2/SnO2 Nanocomposites on Sensitivity to Hydrogen of Sensors on Their Base. Theor Exp Chem 54, 235–241 (2018). https://doi.org/10.1007/s11237-018-9568-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-018-9568-4

Key words

Navigation