Log in

Cerium-doped SnO2 nanomaterials with enhanced gas-sensitive properties for adsorption semiconductor sensors intended to detect low H2 concentrations

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly sensitive to H2 sensors were created on the base of material obtained through tin (II) oxalate oxidation by hydrogen peroxide water solution. It has been established that the addition of 0.1 wt% Ce to the sensor materials significantly increases response values of the sensors to hydrogen micro-concentrations in air (44 ppm H2). Nanoscale nature of the obtained sensor materials was confirmed by transmission electron microscopy and X-ray diffraction analysis. The average particle size of the obtained 0.1 wt% Ce/SnO2 sensor materials was found to be 10.6 nm. The sensors doped with 0.1 wt% Ce exhibit enhanced gas sensing properties: a wide concentration range of H2 detection in air, relatively high selectivity to hydrogen and good repeatability of the response to H2 during long-term sensor operation (2 months). Analysis of the previously reported data has revealed a promising combination of high sensitivity to hydrogen and fast response time with low Ce loading for sensors based on Ce/SnO2 material obtained in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ramirez-Ortega D, Acevedo-Pena P, Tzompantzi F, Arroyo R, Gonzalez F, Gonzalez I (2017) Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. J Mater Sci 52:260–275. https://doi.org/10.1007/s10853-016-0328-3

    Article  CAS  Google Scholar 

  2. Viet P, Thi C, Hieu L (2016) The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J Nanomater 2016:4231046. https://doi.org/10.1155/2016/4231046

    Article  CAS  Google Scholar 

  3. Gu A, Wang S, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J Phys Chem B 108:8119–8123. https://doi.org/10.1021/jp036741e

    Article  CAS  Google Scholar 

  4. Santos N, Rodrigues J, Holz T, Sedrine NB, Sena A, Neves A, Costa F, Monteiro T (2015) Luminescence studies on SnO2 and SnO2: eu nanocrystals grown by laser assisted flow deposition. Phys Chem Chem Phys 17:13512–13519. https://doi.org/10.1039/c4cp06114d

    Article  CAS  Google Scholar 

  5. Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245. https://doi.org/10.1038/nature01353

    Article  CAS  Google Scholar 

  6. Fukai Y, Kondo Y, Mori S, Suzuki E (2007) Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochem Commun 9:1439–1443. https://doi.org/10.1016/j.elecom.2007.01.054

    Article  CAS  Google Scholar 

  7. Kumara G, Tennakone K, Kottegoda I, Bandaranayake P, Konno A, Okuya M, Kaneko S, Murakami K (2003) Efficient dye-sensitized photoelectrochemical cells made from nanocrystalline tin(IV) oxide–zinc oxide composite films. Semicond Sci Technol 18:312–318. https://doi.org/10.1088/0268-1242/18/4/321

    Article  CAS  Google Scholar 

  8. Chen F, Liu M (1999) Preparation of mesoporous tin oxide for electrochemical applications. Chem Commun 18:1829–1830. https://doi.org/10.1039/a904142g

    Article  Google Scholar 

  9. Marikutsa A, Rumyantseva M, Gaskov A, Samoylov A (2015) Nanocrystalline tin dioxide: basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorg Mater 51:1329–1347. https://doi.org/10.1134/s002016851513004x

    Article  CAS  Google Scholar 

  10. Yu-Chong W, Zhong-Sen S, Su-Zhen W, Wa Shu-Ying, Sheng-Xun C, **n-Yu H, Ke L, Zong-Tao C, Shu-Di P, Wan-Feng X (2019) Sub-ppm acetic acid gas sensor based on In2O3 nanofibers. J Mater Sci 54:14055–14063. https://doi.org/10.1007/s10853-019-03877-y

    Article  CAS  Google Scholar 

  11. Jie H, Wang Y, Wang W, Xue Y, Li P, Lian K, Chen L, Zhang W, Zhuiykov S (2017) Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. J Mater Sci 52:11554–11568. https://doi.org/10.1007/s10853-017-1319-8

    Article  CAS  Google Scholar 

  12. Dong** X, PengtaoW Zhanying Z, Yan W (2019) Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: a combined experimental and first-principle study. Sens Actuators B: Chem 296:126710. https://doi.org/10.1016/j.snb.2019.126710

    Article  CAS  Google Scholar 

  13. Yan Z, Zhongqiu H, Xuemin T, ** L (2018) Selective detection of methanol by zeolite/Pd-WO3 gas sensors. Sens Actuators B: Chem 273:1291–1299. https://doi.org/10.1016/j.snb.2018.07.041

    Article  CAS  Google Scholar 

  14. Jun Ho L, Min Sun P, Hwaebong J, Yong-Sahm C, Wonkyung K, Young Geun S, Chong-Yun K, Hyun-Sook L, Wooyoung L (2020) Selective C2H2 detection with high sensitivity using SnO2 nanorod based gas sensors integrated with a gas chromatography. Sens Actuators B: Chem 307:127598. https://doi.org/10.1016/j.snb.2019.127598

    Article  CAS  Google Scholar 

  15. Kee-Ryung P, Hong-Baek C, Jimin L, Yoseb S, Woo-Byoung K, Yong-Ho C (2020) Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens Actuators B: Chem 302:127179. https://doi.org/10.1016/j.snb.2019.127179

    Article  CAS  Google Scholar 

  16. Cao P, Yang Z, Navale S, Han S, Liu X, Liu W, Lu Y, Stadler F, Zhu D (2019) Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens Actuators B: Chem 298:126850. https://doi.org/10.1016/j.snb.2019.126850

    Article  CAS  Google Scholar 

  17. Khodadadi A, Mohajerzadeh S, Mortazavi Y, Miri A (2001) Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO. Sens Actuators B: Chem 80:267–271. https://doi.org/10.1016/s0925-4005(01)00915-7

    Article  CAS  Google Scholar 

  18. Fengjiao P, He L, Hongzhang Z, Zhu M, Yang Z, Kailong X, Bin G, Hao H, Hai Z (2018) Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens Actuators B: Chem 261:451–459. https://doi.org/10.1016/j.snb.2018.01.173

    Article  CAS  Google Scholar 

  19. Abinaya M, Ramjay P, Sridharan M (2019) Highly sensitive room temperature hydrogen sensor based on undoped SnO2 thin films. Solid State Sci 95:105928. https://doi.org/10.1016/j.solidstatesciences.2019.105928

    Article  CAS  Google Scholar 

  20. Yanbai S, Wei W, Anfeng F, Dezhou W, Wengang L, Cong H, Yansong S, Dan M, **aoguang S (2015) Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. Int J Hydrogen Energy 40:15773–15779. https://doi.org/10.1016/j.ijhydene.2015.09.077

    Article  CAS  Google Scholar 

  21. Miller TA, Bakrania SD, Perez C, Wooldridge MS (2006) Nanostructured tin dioxide materials for gas sensor applications. In: Geckeler KE, Rosenberg E (eds) Functional nanomaterials. American Scientific Publishers, Valencia, p 515

    Google Scholar 

  22. Oleksenko L, Fedorenko G, Maksymovych N (2019) Effect of heterogeneous catalytic methane oxidation on kinetics of conductivity response of adsorption semiconductor sensors based on Pd/SnO2 nanomaterial. Res Chem Intermed 45:4101–4111. https://doi.org/10.1007/s11164-019-03893-2

    Article  CAS  Google Scholar 

  23. Rounder E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. https://doi.org/10.1039/b502142c

    Article  CAS  Google Scholar 

  24. Korotcenkov G, Han S-D, Cho B, Brinzari V (2009) Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric thin film gas sensor. Crit Rev Solid State Mater Sci 34:1–17. https://doi.org/10.1080/10408430902815725

    Article  CAS  Google Scholar 

  25. Yamazoe N, Shimanoe K (2009) New perspectives of gas sensor technology. Sens Actuators B: Chem 138:100–107. https://doi.org/10.1016/j.snb.2009.01.023

    Article  CAS  Google Scholar 

  26. Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380. https://doi.org/10.1063/1.1728314

    Article  CAS  Google Scholar 

  27. Dey S, Dhal GC (2020) Cerium catalysts applications in carbon monoxide oxidations. Mater Sci Eng Technol 3:6–24. https://doi.org/10.1016/j.mset.2019.09.003

    Article  Google Scholar 

  28. Haneda M, Katsuragawa Y, Nakamura Y, Towata A (2018) Promoting effect of cerium oxide on the catalytic performance of yttrium oxide for oxidative coupling of methane. Front Chem 6:581. https://doi.org/10.3389/fchem.2018.00581

    Article  CAS  Google Scholar 

  29. Silva AMT, Marques RRN, Quinta-Ferreira RM (2004) Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks. Appl Catal B: Environ 47:269–279. https://doi.org/10.1016/j.apcatb.2003.09.019

    Article  CAS  Google Scholar 

  30. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520. https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  31. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  Google Scholar 

  32. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270. https://doi.org/10.1016/j.surfrep.2007.03.002

    Article  CAS  Google Scholar 

  33. Misono M (2013) Mixed oxides as catalyst supports. Stud Surf Sci Catal 176:157–173. https://doi.org/10.1016/b978-0-444-53833-8.00005-3

    Article  Google Scholar 

  34. Moses WW, Derenzo SE, Weber MJ, Ray-Chaudhuri AK, Cerrina F (1994) Scintillation mechanisms in cerium fluoride. J Lumin 59:89–100. https://doi.org/10.1016/0022-2313(94)90026-4

    Article  CAS  Google Scholar 

  35. Guss P, Foster ME, Wong BM, Doty FP, Shah K, Squillante MR, Shirwadkar U, Hawrami R, Tower J, Yuan D (2014) Results for aliovalent do** of CeBr 3 with Ca2+. J Appl Phys 115:034908. https://doi.org/10.1063/1.4861647

    Article  CAS  Google Scholar 

  36. Yamazoe N, Shimanoe K (2008) Theory of power laws for semiconductor gas sensors. Sens Actuators B: Chem 128:566–573. https://doi.org/10.1016/j.snb.2007.07.036

    Article  CAS  Google Scholar 

  37. Sanger A, Kumar A, Kumar A, Chandra R (2016) Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens Actuators B: Chem 234:8–14. https://doi.org/10.1016/j.snb.2016.04.152

    Article  CAS  Google Scholar 

  38. Zeng W, Liu T, Liu D, Han E (2011) Hydrogen sensing and mechanism of M-doped SnO2 (M = Cr3+, Cu2+ and Pd2+) nanocomposite. Sens Actuators B: Chem 160:455–462. https://doi.org/10.1016/j.snb.2011.08.008

    Article  CAS  Google Scholar 

  39. Yuxiu L, Dongyang D, Nan C, **nxin X, Xu L, Xuechun X, Yude W (2017) Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. J Alloys Compd 710:216–224. https://doi.org/10.1016/j.jallcom.2017.03.274

    Article  CAS  Google Scholar 

  40. Yin X-T, Zhou W-D, Li J, Wang Q, Wu F-Y, Dastan D, Wang D, Garmestani H, Wang X-M, Talu S (2019) A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J Alloys Compd 805:229–236. https://doi.org/10.1016/j.jallcom.2019.07.081

    Article  CAS  Google Scholar 

  41. Yin X-T, Tao L (2017) Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for low concentration hydrogen. J Alloys Compd 727:254–259. https://doi.org/10.1016/j.jallcom.2017.08.122

    Article  CAS  Google Scholar 

  42. Chun-Han W, Zhen Z, Shun-Yong H, Ren-Jang W (2019) Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J Alloys Compd 776:965–973. https://doi.org/10.1016/j.jallcom.2018.10.372

    Article  CAS  Google Scholar 

  43. Alam M, Phan D-T, Chung G-S (2015) Palladium nanocubes decorated on a one-dimensional ZnO nanorods array for use as a hydrogen gas sensor. Mater Lett 156:113–117. https://doi.org/10.1016/j.matlet.2015.05.007

    Article  CAS  Google Scholar 

  44. Hu K, Wang F, Liu H, Li Y, Zeng W (2020) Enhanced hydrogen gas sensing properties of Pd-doped SnO2 nanofibres by Ar plasma treatment. Ceram Int 46:1609–1614. https://doi.org/10.1016/j.ceramint.2019.09.132

    Article  CAS  Google Scholar 

  45. Thai N, Duy N, Toan N, Hung C, Hieu N, Hoa N (2020) Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor. Int J Hydrogen Energy 45:2418–2428. https://doi.org/10.1016/j.ijhydene.2019.11.072

    Article  CAS  Google Scholar 

  46. Chen Z, Hu K, Yang P, Fu X, Wang Z, Yang S, **ong J, Zhang X, Hu Y, Gu H (2019) Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance. J Alloys Compd 811:152086. https://doi.org/10.1016/j.jallcom.2019.152086

    Article  CAS  Google Scholar 

  47. Fedorenko G, Oleksenko L, Maksymovych N (2019) Oxide nanomaterials based on SnO2 for semiconductor hydrogen sensors. Adv Mater Sci Eng 2019:5190235. https://doi.org/10.1155/2019/5190235

    Article  CAS  Google Scholar 

  48. Hammond C (2009) The basics of crystallography and diffraction. Oxford University Press, Oxford

    Google Scholar 

  49. Xu C, Tamaki J, Miura N, Yamazoe N (1992) Stabilization of SnO2 ultrafine particles by additives. J Mater Sci 27:963–971. https://doi.org/10.1007/bf01197649

    Article  CAS  Google Scholar 

  50. Matushko IP, Arinarkhova HO, Oleksenko LP, Maksymovych NP, Fedorenko GV (2018) Nanosized materials CeO2/SnO2 and CeO2/SnO2–Sb2O5 for adsorption semiconductor sensors to detect hydrogen in air. Mol Cryst Liq Cryst 673:23–31. https://doi.org/10.1080/15421406.2019.1578490

    Article  CAS  Google Scholar 

  51. Green I, Tang W, Neurock M, Yates J (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736–739. https://doi.org/10.1126/science.1207272

    Article  CAS  Google Scholar 

  52. Oleksenko L, Fedorenko G, Maksymovych N (2019) Highly sensitive to methane sensor materials based on nano-Pd/SnO2. Theor Exp Chem 55:132–136. https://doi.org/10.1007/s11237-019-09604-7

    Article  CAS  Google Scholar 

  53. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167. https://doi.org/10.1023/a:1014405811371

    Article  CAS  Google Scholar 

  54. Guozhu Z, Changsheng X, Shun** Z, Shasha Z, Ya X (2014) Defect chemistry of the metal cation defects in the p- and n-doped SnO2 nanocrystalline films. J Phys Chem C 118:18097–18109. https://doi.org/10.1021/jp503059e

    Article  CAS  Google Scholar 

  55. Kumar M, Bhatt V, Abhyankar AC, Kim J, Kumar A, Patil SH, Yun J-H (2018) New insights towards strikingly improved room temperature ethanol sensing properties of p-type Ce-doped SnO2 sensors. Sci Rep 8:8079. https://doi.org/10.1038/s41598-018-26504-3

    Article  CAS  Google Scholar 

  56. Liu Y, Yang P, Li J, Matras-Postolek K, Yue Y, Huang B (2015) Morphology adjustment of SnO2 and SnO2/CeO2 one dimensional nanostructures towards applications in gas sensing and CO oxidation. RSC Adv 5:98500–98507. https://doi.org/10.1039/c5ra23446h

    Article  CAS  Google Scholar 

  57. Fajardo HV, Longo E, Probst L, Valentini A, Carreño N, Nunes MR, Maciel AP, Leite ER (2008) Influence of rare earth do** on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res Lett 3:194. https://doi.org/10.1007/s11671-008-9135-3

    Article  CAS  Google Scholar 

  58. Ho C, Yu J, Kwong T, Mak AC, Lai S (2005) Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem Mater 17:4514–4522. https://doi.org/10.1021/cm0507967

    Article  CAS  Google Scholar 

  59. Pfau A, Schierbaum KD (1994) The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study. Surf Sci 321:71–80. https://doi.org/10.1016/0039-6028(94)90027-2

    Article  CAS  Google Scholar 

  60. Mehrer H (2007) Diffusion in solids. Fundamentals, methods, materials, diffusion-controlled processes. Springer, Berlin

    Google Scholar 

  61. Malagù C, Guidi V, Stefancich M, Carotta MC, Martinelli G (2002) Model for Schottky barrier and surface states in nanostructured n-type semiconductors. J Appl Phys 91:808–814. https://doi.org/10.1063/1.1425434

    Article  CAS  Google Scholar 

  62. Korotcenkov G, Brinzari V, Golovanov V, Blinov Y (2004) Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis. Sens Actuators B: Chem 98:41–45. https://doi.org/10.1016/j.snb.2003.08.022

    Article  CAS  Google Scholar 

  63. Oleksenko L, Maksymovych N, Arinarkhova H (2018) Influence of catalytic activity of CeO2/SnO2 nanocomposites on sensitivity to hydrogen of sensors on their base. Theor Exp Chem 54:235–241. https://doi.org/10.1007/s11237-018-9568-4

    Article  CAS  Google Scholar 

  64. Suematsu K, Yuasa M, Kida T, Yamazoe N, Shimanoe K (2012) Effects of crystallite size and donor density on the sensor response of SnO2 nano-particles in the state of volume depletion. J Electrochem Soc 159:J136–J141. https://doi.org/10.1149/2.107204jes

    Article  CAS  Google Scholar 

  65. Oleksenko L, Fedorenko G, Maksymovych N, Matushko I (2018) Platinum containing sensor nanomaterials based on tin dioxide to detect methane in air. Funct Mater 25:741–746. https://doi.org/10.15407/fm25.04.741

    Article  CAS  Google Scholar 

  66. Oleksenko L, Fedorenko G, Maksymovych N (2017) Platinum-containing adsorption-semiconductor sensors based on nanosized tin dioxide for methane detection. Theor Exp Chem 53:259–264. https://doi.org/10.1007/s11237-017-9523-9

    Article  CAS  Google Scholar 

  67. Morrison S (1987) Mechanism of semiconductor gas sensor operation. Sens Actuators 11:283–287. https://doi.org/10.1016/0250-6874(87)80007-0

    Article  CAS  Google Scholar 

  68. Singh G, Virpal Singh RC (2019) Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens Actuators B: Chem 282:373–383. https://doi.org/10.1016/j.snb.2018.11.086

    Article  CAS  Google Scholar 

  69. Zili Z, Chenbo Y, Liu Y, ** J, Yu G (2019) Optimizing the gas sensing characteristics of Co-doped SnO2 thin film based hydrogen sensor. J Alloys Compd 785:819–825. https://doi.org/10.1016/j.jallcom.2019.01.244

    Article  CAS  Google Scholar 

  70. Lavanya N, Sekar C, Fazio E, Neri F, Leonardi SG, Neri G (2017) Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications. Int J Hydrogen Energy 42:10645–10655. https://doi.org/10.1016/j.ijhydene.2017.03.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine (Project 19BF037-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Fedorenko.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, G., Oleksenko, L., Maksymovych, N. et al. Cerium-doped SnO2 nanomaterials with enhanced gas-sensitive properties for adsorption semiconductor sensors intended to detect low H2 concentrations. J Mater Sci 55, 16612–16624 (2020). https://doi.org/10.1007/s10853-020-05199-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05199-w

Navigation