Log in

A Discussion of Probability Functions and Constraints from a Variational Perspective

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

Probability constraints are a popular modelling mechanism in applications. They help to model feasible decisions when the latter are taken prior to observing uncertainty and both decisions and uncertainty are involved in a constraint structure of an optimization problem. The popularity of this paradigm is attested by a vast literature using probability constraints. In this work we try to provide, with variational analysis in mind, an introduction to the topic. We wish to highlight questions regarding the understanding of theoretical properties, such as continuity, (generalized) differentiability, convexity, but also regarding algorithms. We try to highlight open research avenues whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, L., Branda, M.: Nonlinear chance constrained problems: Optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170(2), 419–436 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Adam, L., Branda, M., Heitsch, H., Henrion, R.: Solving joint chance constrained problems using regularization and benders’ decomposition. Ann. Oper. Res., 1–27. https://doi.org/10.1007/s10479-018-3091-9 (2018)

  3. Arnold, T., Henrion, R., Möller, A., Vigerske, S.: A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints. Pacific Journal of Optimization 10, 5–20 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Atwal, P., Conti, S., Geihe, B., Pach, M., Rumpf, M., Schultz, R.: On Shape Optimization with Stochastic Loadings, pp 215–243. Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0133-1∖_12

    MATH  Google Scholar 

  5. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: Numerical optimization: Theoretical and Practical Aspects. 2nd edn Springer (2006)

  6. Borell, C.: Convex set functions in d-space. Period. Math. Hung. 6, 111–136 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Brascamp, H., Lieb, E.: On extensions of the brunn-Minkowski and prékopa-Leindler theorems, including inequalities for log-concave functions and with an application to the diffusion equations. J. Funct. Anal. 22, 366–389 (1976)

    MATH  Google Scholar 

  8. Bremer, I., Henrion, R., Möller, A.: Probabilistic constraints via SQP solver: Application to a renewable energy management problem. Comput. Manag. Sci. 12, 435–459 (2015)

    MathSciNet  MATH  Google Scholar 

  9. de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. 75(2), 523–563 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Deák, I.: Computer Evaluation of a Stochastic Programming Model (In Hungarian). Ph.D. thesis, L. Eötvös Univ. of Budapest (1971)

  11. Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1-2), 115–166 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Fábián, C. I., Csizmás, E., Drenyovszki, R., Vajnai, T., Kovács, L., Szántai, T.: A randomized method for handling a difficult function in a convex optimization problem, motivated by probabilistic programming. Ann. Oper. Res., pp 1–32 (2019)

  13. Fábián, C.I., Csizmás, E., Drenyovszki, R., van Ackooij, W., Vajnai, T., Kovács, L., Szántai, T.: Probability maximization by inner approximation. Acta Polytechnica Hungarica 15(1), 105–125 (2018)

    Google Scholar 

  14. Fang, K., Kotz, S., Ng, K.W.: Symmetric multivariate and related distributions, Monographs on Statistics and Applied Probability, vol. 36, 1st edn Springer-Science (1990)

  15. Farshbaf-Shaker, M.H., Henrion, R., Hömberg, D.: Properties of chance constraints in infinite dimensions with an application to pde constrained optimization. Set Valued and Variational Analysis 26(4), 821–841 (2018). https://doi.org/10.1007/s11228-017-0452-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiacco, A., McCormick, G.: Nonlinear programming: Sequential Unconstrained Minimization Techniques, 2nd edn. Classics in Applied Mathematics SIAM (1987)

  17. Geletu, A., Hoffmann, A., Klöppel, M., Li, P.: An inner-outer approximation approach to chance constrained optimization. SIAM J. Optim. 27(3), 1834–1857 (2017)

    MathSciNet  MATH  Google Scholar 

  18. González Gradón, T., Henrion, R., Pérez-Aros, P.: Dynamic probabilistic constraints under continuous random distributions. Preprint: https://opus4.kobv.de/opus4-trr154/files/254/GrandonHenrionAros.pdf, pp. 1–19 (2019)

  19. Gotzes, C., Heitsch, H., Henrion, R., Schultz, R.: On the quantification of nomination feasibility in stationary gas networks with random loads. Mathematical Methods of Operations Research 84, 427–457 (2016). https://doi.org/10.1007/s00186-016-0564-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, S., Xu, H., Zhang, L.: Convergence analysis for mathematical programs with distributionally robust chance constraint. SIAM J. Optim. 27(2), 784–816 (2017). https://doi.org/10.1137/15M1036592

    Article  MathSciNet  MATH  Google Scholar 

  21. Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Mathematical Programming Series B 151, 35–62 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Hantoute, A., Henrion, R., Pérez-Aros, P.: Subdifferential characterization of continuous probability functions under Gaussian distribution. Math. Program. 174(1-2), 167–194 (2019). https://doi.org/10.1007/s10107-018-1237-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonconvex functions with inexact oracles. Comput. Optim. Appl. 63(1), 1–28 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optimization Methods and Software 24 (4-5), 761–779 (2009). https://doi.org/10.1080/10556780802699201

    Article  MathSciNet  MATH  Google Scholar 

  25. Henrion, D., Lasserre, J.B., Savorgnan, C.: Approximate volume and integration for basic semialgebraic sets. SIAM Rev. 51(4), 722–743 (2009). https://doi.org/10.1137/080730287

    Article  MathSciNet  MATH  Google Scholar 

  26. Henrion, R.: Optimierungsprobleme mit wahrscheinlichkeitsrestriktionen: Modelle, struktur, numerik, Lecture Notes, pp 1–53 (2016)

  27. Henrion, R., Möller, A.: A gradient formula for linear chance constraints under Gaussian distribution. Math. Oper. Res. 37, 475–488 (2012). https://doi.org/10.1287/moor.1120.0544

    Article  MathSciNet  MATH  Google Scholar 

  28. Henrion, R., Römisch, W.: Metric regularity and quantitative stability in stochastic programs with probabilistic constraints. Math. Program. 84, 55–88 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Henrion, R., Römisch, W.: Hölder and lipschitz stability of solution sets in programs with probabilistic constraints. Math. Program. 100, 589–611 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Henrion, R., Römisch, W.: Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions. Ann. Oper. Res. 177, 115–125 (2010). https://doi.org/10.1007/s10479-009-0598-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Henrion, R., Römisch, W.: Problem-based optimal scenario generation and reduction in stochastic programming. Mathematical Programming B, pp. 1–23. https://doi.org/10.1007/s10107-018-1337-6 (2018)

  32. Henrion, R., Strugarek, C.: Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41, 263–276 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, 2nd edn. No. 305 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)

    Google Scholar 

  34. Hong, L., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programed: a monte carlo approach. Oper. Res. 3(59), 617–630 (2011)

    MATH  Google Scholar 

  35. Kall, P., Mayer, J.: Stochastic Linear programming: Models, Theory and Computation, 1st edn. International Series in Operations Research and Management Science Springer (2005)

  36. Kibzun, A., Uryas’ev, S.: Differentiability of probability function. Stoch. Anal. Appl. 16, 1101–1128 (1998). https://doi.org/10.1080/07362999808809581

    Article  MathSciNet  MATH  Google Scholar 

  37. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1-2), 31–56 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Landsman, Z.M., Valdez, E.A.: Tail conditional expectations for elliptical distributions. North American Actuarial Journal 7(4), 55–71 (2013). https://doi.org/10.1080/10920277.2003.10596118

    Article  MathSciNet  MATH  Google Scholar 

  39. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications, Imperial College Press Optimization, vol. 1, 1st edn Imperial College Press. https://doi.org/10.1142/p665 (2009)

  40. Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithm for two-stage chance constrained programs. Mathematical Programming Series B 157(1), 219–243 (2016). https://doi.org/10.1007/s10107-014-0832-7

    Article  MathSciNet  MATH  Google Scholar 

  41. Luedtke, J.: An integer programming and decomposition approach to general chance-constrained mathematical programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 6080, pp 271–284 . Springer (2010)

  42. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146(1-2), 219–244 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122 (2), 247–272 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Marti, K.: Differentiation of probability functions : the transformation method. Computers and Mathematics with Applications 30, 361–382 (1995). https://doi.org/10.1016/0898-1221(95)00113-1

    Article  MathSciNet  MATH  Google Scholar 

  46. Marti, K.: Differentiation of probability functions : the transformation method. Math. Programming 75(2), 201–220 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Matiussi Ramalho, G.: : Extensions for Probabilistic Constrained Programming Problems: The Cases of Non-Continuous Unit Commitment and Bilinear Energy Portfolio Management. Ph.D. thesis, Universidad Federal de Santa Catarina (2019)

  48. Minoux, M.: Programmation mathématique: théorie et Algorithmes, 2nd edn Tec & Doc Lavoisier (2007)

  49. Minoux, M., Zorgati, R.: Convexity of gaussian chance constraints and of related probability maximization problems. Comput. Stat. 31(1), 387–408 (2016). https://doi.org/10.1007/s00180-015-0580-z

    Article  MathSciNet  MATH  Google Scholar 

  50. Minoux, M., Zorgati, R.: Global probability maximization for a gaussian bilateral inequality in polynomial time. J. Glob. Optim. 68(4), 879–898 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Nash, S., Sofer, A.: A barrier-method for large-scale constrained optimization. ORSA J. Comput. 5, 40–53 (1993)

    MathSciNet  MATH  Google Scholar 

  52. Nash, S., Sofer, A.: Why extrapolation helps barrier methods. Tech. rep., Department of Operations Research and Engineering George Mason University (1998)

  53. Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function values. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J., Wolkowicz, H. (eds.) Computational and Analytical Mathematics, Springer Proceedings in Mathematics & Statistics, vol. 50, pp 555–592. Springer (2013)

  54. Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Prog. Series B 148, 241–277 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Pflug, G.C., Pichler, A.: Approximations for probability distributions and stochastic optimization problems. In: Bertocchi, M., Consigli, G., Dempster, M. (eds.) Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Market Strategies, International Series in Operations Research & Management Science, vol. 163, pp 343–387. Springer (2011)

  56. Prékopa, A.: On probabilistic constrained programming. In: Kuhn, H. (ed.) Proceedings of the Princeton Symposium on Math. Prog, vol. 28, pp 113–138 (1970)

  57. Prékopa, A.: A class of stochastic programming decision problems. Matematische Operations forschung und Statistik 3, 349–354 (1972)

    MathSciNet  MATH  Google Scholar 

  58. Prékopa, A.: On logarithmic concave measures and functions. Acta Scientiarium Mathematicarum (Szeged) 34, 335–343 (1973)

    MathSciNet  MATH  Google Scholar 

  59. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-3087-7

    MATH  Google Scholar 

  60. Prékopa, A.: Probabilistic Programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp 267–351. Elsevier, Amsterdam (2003)

  61. Prékopa, A., Ganczer, S., Deák, I., Patyi, K.: The STABIL stochastic programming model and its experimental application to the electrical energy sector of the hungarian economy. In: Dempster, M. (ed.) Stochastic Programming. 1st edn., pp 369–385. Academic Press Inc (1980)

  62. Prékopa, A., Rapcsák, T., Zsuffa, I.: Serially linked reservoir system design using stochastic programming. Water Resour. Res. 14, 672–678 (1978)

    MATH  Google Scholar 

  63. Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. Math. Programming Study 9, 138–151 (1978)

    MathSciNet  MATH  Google Scholar 

  64. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: The benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 259(3), 801–817 (2017)

    MathSciNet  MATH  Google Scholar 

  65. Raik, E.: The differentiability in the parameter of the probability function and optimization of the probability function via the stochastic pseudogradient method (russian). Izvestiya Akad. Nayk Est. SSR, Phis Math. 24(1), 3–6 (1975)

    MathSciNet  MATH  Google Scholar 

  66. Rapcsák, T.: On the Numerical Solution of a Reservoir Model (In Hungarian), Ph.D. thesis, University of Debrecen (Hungary (1974)

  67. Rockafellar, R., Wets, R.J.B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, 3rd edn., vol. 317. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02431-3

    Google Scholar 

  68. Roenko, N.: Stochastic Programming Problems with Integral Functionals over Multivalues Map**s (In Russian), Ph.D. thesis, USSR Kiev (1983)

  69. Römisch, W., Schultz, R.: Stability analysis for stochastic programs. Ann. Oper. Res. 30, 241–266 (1991)

    MathSciNet  MATH  Google Scholar 

  70. Royset, J., Polak, E.: Implementable algorithm for stochastic optimization using sample average approximations. Journal of Optimization Theory and Applications 122(1), 157–184 (2004). https://doi.org/10.1023/B:JOTA.0000041734.06199.71

    Article  MathSciNet  MATH  Google Scholar 

  71. Royset, J., Polak, E.: Extensions of stochastic optimization results to problems with system failure probability functions. J. Optim. Theory Appl. 133 (1), 1–18 (2007). https://doi.org/10.1007/s10957-007-9178-0

    Article  MathSciNet  MATH  Google Scholar 

  72. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Modeling and Theory MPS-SIAM Series on Optimization, vol. 9. SIAM and MPS, Philadelphia (2009)

    MATH  Google Scholar 

  73. Szántai, T.: A computer code for solution of probabilistic-constrained stochastic programming problems. In: Ermoliev, Y., Wets, R.J.-B. (eds.) Numerical Techniques for Stochastic Optimization, pp 229–235 (1988)

  74. Tamm, E.: On g-concave functions and probability measures (russian). Eesti NSV Teaduste Akademia Toimetised. Füüsika-Matemaatika 28, 17–24 (1977)

    Google Scholar 

  75. Topkis, D., Veinott, A.: On the convergence of some feasible direction algorithms for nonlinear programming. SIAM Journal on Control 5(2), 268–279 (1967)

    MathSciNet  MATH  Google Scholar 

  76. Uryas’ev, S.: Differentiation formula for integrals over sets given by inclusion. Tech. Rep. WP-88-59 IIASA (1988)

  77. Uryas’ev, S.: On the differentiability of an integral over the set given by inclusion (in russian). Kibernetika 5, 83–86 (1988)

    Google Scholar 

  78. Uryas’ev, S.: A differentation formula for integrals over sets given by inclusion. Numerical Functional Analysis and Optimization 10(7&8), 827–841 (1989)

    MathSciNet  MATH  Google Scholar 

  79. Uryas’ev, S.: Derivatives of probability functions and integrals over sets given by inequalities. J. Comput. Appl. Math. 56(1-2), 197–223 (1994). https://doi.org/10.1016/0377-0427(94)90388-3

    Article  MathSciNet  MATH  Google Scholar 

  80. Uryas’ev, S.: Derivatives of probability functions and some applications. Ann. Oper. Res. 56, 287–311 (1995). https://doi.org/10.1007/BF02031712

    Article  MathSciNet  Google Scholar 

  81. Uryas’ev, S.: Introduction to the theory of probabilistic functions and percentiles (Value-At-Risk). In: Uryas’Ev, S. (ed.) Probabilistic Constrained Optimization: Methodology and Applications. 1st edn., pp 1–25. Kluwer Academic Publishers (2000)

  82. Uryas’ev, S.: Derivatives of probability and integral functions: general theory and examples. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization. 2nd edn., pp 658–663. Springer (2009)

  83. van Ackooij, W.: Eventual convexity of chance constrained feasible sets. Optimization (A Journal of Math. Programming and Operations Research) 64 (5), 1263–1284 (2015). https://doi.org/10.1080/02331934.2013.855211

    Article  MathSciNet  MATH  Google Scholar 

  84. van Ackooij, W.: Convexity statements for linear probability constraints with gaussian technology matrices and copulæ correlated rows. ResearchGate, pp. 1–19. https://doi.org/10.13140/RG.2.2.11723.69926 (2017)

  85. van Ackooij, W., Aleksovska, I., Zuniga, M.M.: (sub-)differentiability of probability functions with elliptical distributions. Set Valued and Variational Analysis 26(4), 887–910 (2018). https://doi.org/10.1007/s11228-017-0454-3

    Article  MathSciNet  MATH  Google Scholar 

  86. van Ackooij, W., de Oliveira, W.: Nonsmooth and nonconvex optimization via approximate difference-of-convex decompositions. J. Optim. Theory Appl. 182(1), 49–80 (2018). https://doi.org/10.1007/s10957-019-01500-3

    Article  MathSciNet  MATH  Google Scholar 

  87. van Ackooij, W., Finardi, E.C., Matiussi Ramalho, G.: An exact solution method for the hydrothermal unit commitment under wind power uncertainty with joint probability constraints. IEEE Trans Power Syst 33(6), 6487–6500 (2018). https://doi.org/10.1109/TPWRS.2018.2848594

    Article  Google Scholar 

  88. van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized Benders’ decomposition approaches: with application to chance-constrained problems with finite support. Comput Optim Appl 65(3), 637–669 (2016). https://doi.org/10.1007/s10589-016-9851-z

    Article  MathSciNet  MATH  Google Scholar 

  89. van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4), 1864–1889 (2014). https://doi.org/10.1137/130922689

    Article  MathSciNet  MATH  Google Scholar 

  90. van Ackooij, W., Henrion, R: (Sub-) Gradient formulae for probability functions of random inequality systems under Gaussian distribution. SIAM Journal on Uncertainty Quantification 5(1), 63–87 (2017). https://doi.org/10.1137/16M1061308

    Article  MathSciNet  MATH  Google Scholar 

  91. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir management. Optim. Eng. 15, 509–531 (2014). https://doi.org/10.1007/s11081-013-9236-4

    Article  MathSciNet  MATH  Google Scholar 

  92. van Ackooij, W., Laguel, Y., Malick, J., Matiussi Ramalho, G.: On the convexity of level-sets of probability functions. Submitted preprint, pp 1–25 (2018)

  93. van Ackooij, W., Malick, J.: Second-order differentiability of probability functions. Optim. Lett. 11(1), 179–194 (2017). https://doi.org/10.1007/s11590-016-1015-7

    Article  MathSciNet  MATH  Google Scholar 

  94. van Ackooij, W., Malick, J.: Eventual convexity of probability constraints with elliptical distributions. Math. Program. 175(1), 1–27 (2019). https://doi.org/10.1007/s10107-018-1230-3

    Article  MathSciNet  MATH  Google Scholar 

  95. van Ackooij, W., Minoux, M.: A characterization of the subdifferential of singular Gaussian distribution functions. Set Valued and Variational Analysis 23 (3), 465–483 (2015). https://doi.org/10.1007/s11228-015-0317-8

    Article  MathSciNet  MATH  Google Scholar 

  96. van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput Optim Appl 57(3), 555–597 (2014)

    MathSciNet  MATH  Google Scholar 

  97. van Ackooij, W., de Oliveira, W.: Convexity and optimization with copulæ structured probabilistic constraints. Optimization: A Journal of Mathematical Programming and Operations Research 65(7), 1349–1376 (2016). https://doi.org/10.1080/02331934.2016.1179302

    Article  MathSciNet  MATH  Google Scholar 

  98. van Ackooij, W., Pérez-Aros, P.: Gradient formulae for nonlinear probabilistic constraints with non-convex quadratic forms. J. Optim. Theory Appl. 185(1), 239–269 (2020). https://doi.org/10.1007/s10957-020-01634-9

    Article  MathSciNet  MATH  Google Scholar 

  99. van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)

    MathSciNet  MATH  Google Scholar 

  100. Veinott, A.: The supporting hyperplane method for unimodal programming. Oper. Res. 15, 147–152 (1967)

    MathSciNet  MATH  Google Scholar 

  101. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62, 1358–1376 (2014)

    MathSciNet  MATH  Google Scholar 

  102. Wu, H.H., Küçükyavuz, S.: Chance-constrained combinatorial optimization with a probability oracle and its application to probabilistic partial set covering. SIAM J. Optim. 29(1), 690–718 (2019)

    MathSciNet  MATH  Google Scholar 

  103. Zoutendijk, G.: Methods of Feasible Directions : a Study in Linear and Non-Linear Programming. 1st edn, Elsevier (1960)

  104. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137 (1-2), 167–198 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the editors of this special issue for their efficient handling of the manuscript and very kind invitation. The author also gratefully acknowledges the very thorough reviews from two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim van Ackooij.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Supplementary material

Appendix: Supplementary material

For the convenience of the reader we will provide directly the definition of some basic notions. The first notion discusses continuity properties of set-valued map**s (see, e.g., Def. 5.4 [67]):

Definition A.1

Let \(M : \Re ^{n} \rightrightarrows \Re ^{m}\) be a set-valued map**. The map** M is said to be outer semicontinuous at \(\bar x \in \Re ^{n}\) if

$$ \limsup_{x \rightarrow \bar x} M(x) \subseteq M(\bar x), $$

which means that any (possible) cluster point z of \(\left \{z_{n}\right \}_{n \geq 0}\) must belong to \(M(\bar x)\), where znM(xn), and xn is a sequence converging to \(\bar x\).

The map** M is said to be inner semicontinuous at \(\bar x\) if

$$ M(\bar x) \subseteq \liminf_{x \rightarrow \bar x} M(x), $$

which means that any \(\bar z \in M(\bar x)\), can be seen as the limit of a sequence znM(xn), \(x_{n} \rightarrow \bar x\).

We have also employed generalized concavity. Once more for the convenience of the reader, we formally introduce this concept. This is best done through the use of an auxiliary map**:

Definition A.2

Let \(m_{\alpha } : \mathbb {R}_{+} \times \mathbb {R}_{+} \times [0,1] \rightarrow \mathbb {R}\) (for a given \(\alpha \in [-\infty ,\infty ]\)) be defined as follows:

$$ \text{if} ab = 0 \text{and} \alpha \leq 0, \qquad m_{\alpha}(a,b,\lambda) = 0 $$
(16)

else, for λ ∈ [0, 1], we let:

$$ m_{\alpha}(a,b,\lambda) = \left \{ \begin{array}{ccc} a^{\lambda}b^{1-\lambda} & \text{if} & \alpha=0 \\ \min\left\{a,b\right\} & \text{if} & \alpha=-\infty \\ \max\left\{a,b\right\} & \text{if} & \alpha=\infty \\ (\lambda a^{\alpha} + (1-\lambda)b^{\alpha})^{\frac{1}{\alpha}} & \text{else} & \end{array} \right. $$
(17)

Definition A.3

Let C be a convex subset of Rn. We say that a function \(f : C \rightarrow \mathbb {R}_{+}\) is α-concave if

$$ f(\lambda x + (1-\lambda) y) \geq m_{\alpha}(f(x),f(y),\lambda), $$
(18)

for all x,yC and λ ∈ [0, 1].

The map** is said to be α-convex if

$$ f(\lambda x + (1-\lambda) y) \leq m_{\alpha}(f(x),f(y),\lambda), $$
(19)

for all x,yC and λ ∈ [0, 1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ackooij, W. A Discussion of Probability Functions and Constraints from a Variational Perspective. Set-Valued Var. Anal 28, 585–609 (2020). https://doi.org/10.1007/s11228-020-00552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-020-00552-2

Keywords

Mathematics Subject Classification (2010)

Navigation