Log in

Density functional theory investigation of interactions between phenolic compounds and water or hydrophobic deep eutectic solvent

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the possibility to replace organic solvent by new type of green solvent (hydrophobic deep eutectic solvent) for the extraction of phenolic compounds by evaluating the interactions between phenolic compounds and water or hydrophobic deep eutectic solvent. With a comparison of both interactions, the ability of the solvent to extract targeted molecule can be predicted. First, study of molecular conformations of phenol, guaiacol, pyrocatechol and eugenol was performed using Density Functional Theory (DFT) with the model M06-2X and the basis set cc-pVTZ. Influence of water involved in {water-phenolic compound} clusters on electronegativity and hardness was investigated. In addition, hydrogen bonds involved in the hydrophobic deep eutectic solvent menthol: dodecanoic acid [2:1] were also evaluated. Finally, study of {hydrophobic deep eutectic solvent- phenol} cluster was performed. The results show that the interaction energy of the {phenol-HDES menthol: dodecanoic acid [2:1]} cluster (53.63 kcal.mol−1) is higher than the one calculated for {phenol-water} (35.26 kcal.mol−1) reflecting the ability of this HDES to extract phenol from water. Natural bond analysis (NBO) reports a strong stabilisation of hydrogen bonds involved in all systems. For the {phenol-HDES} cluster, the largest stabilisation energy (4 kcal.mol−1) is obtained for the hydrogen bond between the phenol and the carboxyl acid of the HDES. Frequency results show that this particular OH-bond is the most red-shifted in cluster in comparison with isolated form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and also in the supporting information file.

References

  1. Ohara H (2003) Biorefinery. Appl Microbiol Biotechnol 62:474-477. https://doi.org/10.1007/s00253-003-1383-7

    Article  PubMed  CAS  Google Scholar 

  2. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin, 2007. https://doi.org/10.2172/921839

  3. Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152-159. https://doi.org/10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  4. Sarika PR, Nancarrow P, Khansaheb A, Ibrahim T (2020) Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins. Polymers 12:2237. https://doi.org/10.3390/polym12102237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kim H-M et al (1997) Antianaphylactic properties of eugenol. Pharmacol Res 36:6

  6. Ross WJ, White JC (1961) Application of Pyrocatechol Violet as a Colorimetric Reagent for Tin. Anal Chem 33:421-424. https://doi.org/10.1021/ac60171a034

    Article  CAS  Google Scholar 

  7. Capunitan JA, Capareda SC (2013) Characterization and separation of corn stover bio-oil by fractional distillation. Fuel 112:60-73. https://doi.org/10.1016/j.fuel.2013.04.079

    Article  CAS  Google Scholar 

  8. Guo Z, Wang S, Gu Y, Xu G, Li X, Luo Z (2010) Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep Purif Technol 76:52-57. https://doi.org/10.1016/j.seppur.2010.09.019

    Article  CAS  Google Scholar 

  9. Wang S, Gu Y, Liu Q, Yao Y, Guo Z, Luo Z, Cen K (2009) Separation of bio-oil by molecular distillation. Fuel Process Technol 90:738-745. https://doi.org/10.1016/j.fuproc.2009.02.005

    Article  CAS  Google Scholar 

  10. Wei Y, Lei H, Wang L, Zhu L, Zhang X, Liu Y, Chen S, Ahring B (2014) Liquid-Liquid Extraction of Biomass Pyrolysis Bio-oil. Energy Fuels 28:1207-1212. https://doi.org/10.1021/ef402490s

    Article  CAS  Google Scholar 

  11. Haverly MR, Okoren KV, Brown RC (2016) Thermal Stability of Fractionated Bio-Oil from Fast Pyrolysis. Energy Fuels 30:9419-9426. https://doi.org/10.1021/acs.energyfuels.6b01606

    Article  CAS  Google Scholar 

  12. Holbrey JD, Seddon KR (1999) Ionic Liquids, Clean Technol. Environ. Policy 1:223-236. https://doi.org/10.1007/s100980050036

    Article  Google Scholar 

  13. Cesari L, Canabady-Rochelle L, Mutelet F (2019) Separation of phenols from lignin pyrolysis oil using ionic liquid. Sep Purif Technol 209:528-534. https://doi.org/10.1016/j.seppur.2018.07.083

    Article  CAS  Google Scholar 

  14. Deng J, Luo Z, Wang C, Zhu X (2021) Extraction of phenols from bio-oil aqueous fraction by hydrophobic ionic liquids. J Fuel Chem Technol 49:1832-1839. https://doi.org/10.1016/S1872-5813(21)60108-1

    Article  CAS  Google Scholar 

  15. Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: A review. Water Res 44:352-372. https://doi.org/10.1016/j.watres.2009.09.030

  16. Amde M, Liu J-F, Pang L (2015) Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ Sci Technol 49:12611-12627. https://doi.org/10.1021/acs.est.5b03123

    Article  PubMed  CAS  Google Scholar 

  17. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/, Chem Commun 70-71. https://doi.org/10.1039/b210714g

  18. Marcus Y (2019) Deep Eutectic Solvents, Springer International Publishing. Cham. https://doi.org/10.1007/978-3-030-00608-2

    Article  Google Scholar 

  19. Guo W, Hou Y, Wu W, Ren S, Tian S, Marsh KN (2013) Separation of phenol from model oils with quaternary ammonium saltsvia forming deep eutectic solvents. Green Chem 15:226-229. https://doi.org/10.1039/C2GC36602A

    Article  CAS  Google Scholar 

  20. Jiao T, Qin X, Zhang H, Zhang W, Zhang Y, Liang P (2019) Separation of phenol and pyridine from coal tar via liquid-liquid extraction using deep eutectic solvents. Chem Eng Res Des 145:112-121. https://doi.org/10.1016/j.cherd.2019.03.006

    Article  CAS  Google Scholar 

  21. Li G, **e Q, Liu Q, Liu J, Wan C, Liang D, Zhang H (2020) Separation of phenolic compounds from oil mixtures by betaine-based deep eutectic solvents. Asia-Pac J Chem Eng. https://doi.org/10.1002/apj.2515

    Article  Google Scholar 

  22. Pang K, Hou Y, Wu W, Guo W, Peng W, Marsh KN (2012) Efficient separation of phenols from oils via forming deep eutectic solvents. Green Chem 14:2398. https://doi.org/10.1039/c2gc35400d

    Article  CAS  Google Scholar 

  23. van Osch DJGP, Zubeir LF, van den Bruinhorst A, Rocha MAA, Kroon MC (2015) Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem 17:4518-4521. https://doi.org/10.1039/C5GC01451D

    Article  CAS  Google Scholar 

  24. Florindo C (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments 8

  25. Adeyemi I, Sulaiman R, Almazroui M, Al-Hammadi A, AlNashef IM (2020) Removal of chlorophenols from aqueous media with hydrophobic deep eutectic solvents: Experimental study and COSMO RS evaluation. J Mol Liq 311:113180. https://doi.org/10.1016/j.molliq.2020.113180

  26. Lee J (2019) Hydrophobic deep eutectic solvents for the extraction of organic and inorganic analytes from aqueous environments. Trends Anal Chem 16

  27. Brouwer T, Dielis BC, Bock JM, Schuur B (2021) Hydrophobic Deep Eutectic Solvents for the Recovery of Bio-Based Chemicals: Solid-Liquid Equilibria and Liquid-Liquid Extraction. Processes 9:796. https://doi.org/10.3390/pr9050796

    Article  CAS  Google Scholar 

  28. Dwamena AK (2019) Recent Advances in Hydrophobic Deep Eutectic Solvents for Extraction. Separations 6:9. https://doi.org/10.3390/separations6010009

    Article  CAS  Google Scholar 

  29. Lewars EG (2011) Computational Chemistry, Springer, Netherlands. Dordrecht. https://doi.org/10.1007/978-90-481-3862-3

    Article  Google Scholar 

  30. Levine IN (2014) Quantum chemistry, 7th edn. Pearson, Boston

    Google Scholar 

  31. Dreizler RM, Gross EK (2012) Density Functional Theory

  32. de Moraes EE, Tonel MZ, Fagan SB, Barbosa MC (2019) Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface. J Mol Model 25:302. https://doi.org/10.1007/s00894-019-4185-2

    Article  PubMed  CAS  Google Scholar 

  33. Pasha FA, Srivastava HK, Singh PP (2005) Comparative QSAR study of phenol derivatives with the help of density functional theory. Bioorg Med Chem 13:6823-6829. https://doi.org/10.1016/j.bmc.2005.07.064

    Article  PubMed  CAS  Google Scholar 

  34. Korth H-G, de Heer MI, Mulder P (2002) A DFT Study on Intramolecular Hydrogen Bonding in 2-Substituted Phenols: Conformations, Enthalpies, and Correlation with Solute Parameters. J Phys Chem A 106:8779-8789. https://doi.org/10.1021/jp025713d

    Article  CAS  Google Scholar 

  35. Benoit DM, Clary DC (2000) Quantum Simulation of Phenol−Water Clusters. J Phys Chem A 104:5590-5599. https://doi.org/10.1021/jp994420q

    Article  CAS  Google Scholar 

  36. Zhang H-Y, Sun Y-M, Wang X-L (2003) Substituent Effects on OH Bond Dissociation Enthalpies and Ionization Potentials of Catechols: A DFT Study and Its Implications in the Rational Design of Phenolic Antioxidants and Elucidation of Structure-Activity Relationships for Flavonoid Antioxidants. Chem - Eur J 9:502-508. https://doi.org/10.1002/chem.200390052

    Article  PubMed  CAS  Google Scholar 

  37. Fang W-H (2000) Theoretical characterization of the excited-state structures and properties of phenol and its one-water complex J Chem Phys 112:1204-1211 https://doi.org/10.1063/1.480673

  38. Schumm S, Gerhards M, Roth W, Gier H, Kleinermanns K (1996) A CASSCF study of the S0 and S1 states of phenol. Chem Phys Lett 263:126-132. https://doi.org/10.1016/S0009-2614(96)01172-4

  39. Feller D, Feyereisen MW (1993) Ab initio study of hydrogen bonding in the phenol-water system. J Comput Chem 14:1027-1035. https://doi.org/10.1002/jcc.540140904

    Article  CAS  Google Scholar 

  40. Schütz M, Bürgi T, Leutwyler S (1992) Structures and vibrations of phenol · H2O and d-phenol · D2O based on ab initio calculations. J Mol Struct THEOCHEM 276:117-132. https://doi.org/10.1016/0166-1280(92)80026-I

    Article  Google Scholar 

  41. Cesari L, Canabady-Rochelle L, Mutelet F (2018) Computational study on the molecular conformations of phenolic compounds. Struct Chem 29:179-194. https://doi.org/10.1007/s11224-018-1081-9

    Article  CAS  Google Scholar 

  42. Mandado M, Graña AM, Mosquera RA (2004) Do 1,2-ethanediol and 1,2-dihydroxybenzene present intramolecular hydrogen bond? Phys Chem Chem Phys 6:4391-4396. https://doi.org/10.1039/B406266C

    Article  CAS  Google Scholar 

  43. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  44. Estácio SG, Cabral do Couto P, Costa Cabral BJ, Minas da Piedade ME, Martinho Simões JA (2004) Energetics of Intramolecular Hydrogen Bonding in Di-substituted Benzenes by the ortho−para Method. J Phys Chem A 108:10834-10843. https://doi.org/10.1021/jp0473422

  45. Agache C, Popa VI (2006) Ab Initio Studies on the Molecular Conformation of Lignin Model Compounds I. Conformational Preferences of the Phenolic Hydroxyl and Methoxy Groups in Guaiacol. Monatshefte Für Chem-Chem Mon 137:55-68. https://doi.org/10.1007/s00706-005-0404-x

  46. Gurusinghe RM, Fox-Loe A, Tubergen MJ (2021) Structures of guaiacol and the guaiacol-argon van der waals complex from rotational spectroscopy of guaiacol isotopologues. J Mol Struct 1246:131233. https://doi.org/10.1016/j.molstruc.2021.131233

  47. Wu R, Brutschy B (2004) Study on the structure and intra- and intermolecular hydrogen bonding of 2-methoxyphenol·(H2O)n (n=1,2). Chem Phys Lett 390:272-278. https://doi.org/10.1016/j.cplett.2004.04.023

    Article  CAS  Google Scholar 

  48. Sharma A, Singh OP, Sharma AK, Kumar A, Sharma AK (2019) Ab-initio study of vibrational spectra revealed the better reactive potential of Eugenol over Carvacrol: Bioactive compounds derived from Ocimum tenuiflorum (Tulsi). Int J Pharm Res 11. https://doi.org/10.31838/ijpr/2019.11.01.014

  49. Longarte A, Redondo C (2004) Experimental and theoretical study of the structures and binding energies of eugenol (H2O)n, n=0-2. J Chem Phys 121:12

    Article  Google Scholar 

  50. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  51. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  52. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem 98:11623-11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  53. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215-241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  54. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J Phys Chem A 117:12590-12600. https://doi.org/10.1021/jp408166m

    Article  PubMed  CAS  Google Scholar 

  55. Kołaski M, Kumar A, Singh NJ, Kim KS (2011) Differences in structure, energy, and spectrum between neutral, protonated, and deprotonated phenol dimers: comparison of various density functionals with ab initio theory. Phys Chem Chem Phys 13:991-1001. https://doi.org/10.1039/C003008B

    Article  PubMed  Google Scholar 

  56. Wang QD, Sun MM, Liang J (2021) Theoretical study of the hydrogen abstraction reactions from substituted phenolic species. Comput Theor Chem 1196:113120. https://doi.org/10.1016/j.comptc.2020.113120

  57. Deb DK, Sarkar B (2016) Impact of deformation energy on the hydrogen bonding interactions in gas phase 3-X catechol ⋯ H2O complexes (X = H, F, Cl, Br): The effect of approach of a water molecule. Chem Phys 472:95-104. https://doi.org/10.1016/j.chemphys.2016.03.003

    Article  CAS  Google Scholar 

  58. Candido Júnior JR, Romeiro LA, Marinho ES, Monteiro ND, de Lima-Neto P (2022) Antioxidant activity of eugenol and its acetyl and nitroderivatives: the role of quinone intermediates—a DFT approach of DPPH test. J Mol Model 28:133. https://doi.org/10.1007/s00894-022-05120-z

  59. Praveena R, Anbazhakan K, Gerli Candia L, Glossman-Mitnik D, Cardona W, Sadasivam K, Salgado G (2020) Theoretical assessment of antioxidant property of polyproponoid and its derivatives. https://doi.org/10.1007/s11224-019-01475-x

  60. Shakourian-Fard M, Ghenaatian HR, Alizadeh V, Kamath G, Khalili B (2021) Density functional theory investigation into the interaction of deep eutectic solvents with amino acids. J Mol Liq 343:117624. https://doi.org/10.1016/j.molliq.2021.117624

  61. Biernacki K, Souza HKS, Almeida CMR, Magalhães AL, Gonçalves MP (2020) Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents with Polyols: An Experimental and Theoretical Investigation. ACS Sustain Chem Eng 8:18712-18728. https://doi.org/10.1021/acssuschemeng.0c08288

    Article  CAS  Google Scholar 

  62. García G, Atilhan M, Aparicio S (2015) An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chem Phys Lett 634:151-155. https://doi.org/10.1016/j.cplett.2015.06.017

    Article  CAS  Google Scholar 

  63. Makoś P, Boczkaj G (2019) Deep eutectic solvents based highly efficient extractive desulfurization of fuels-Eco-friendly approach. J Mol Liq 296:111916. https://doi.org/10.1016/j.molliq.2019.111916

  64. Pisano PL, Espino M, de los Ángeles Fernández M, Silva MF, Olivieri AC (2018) Structural analysis of natural deep eutectic solvents. Theoretical and experimental study. Microchem J 143:252-258. https://doi.org/10.1016/j.microc.2018.08.016

  65. Kalhor P, Xu J, Ashraf H, Cao B, Yu Z-W (2020) Structural Properties and Hydrogen-Bonding Interactions in Binary Mixtures Containing a Deep-Eutectic Solvent and Acetonitrile. J Phys Chem B 124:1229-1239. https://doi.org/10.1021/acs.jpcb.9b10751

    Article  PubMed  CAS  Google Scholar 

  66. Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M (2022) Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 23:645. https://doi.org/10.3390/ijms23020645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gautam R, Kumar N, Lynam JG (2020) Theoretical and experimental study of choline chloride-carboxylic acid deep eutectic solvents and their hydrogen bonds. J Mol Struct 1222:128849. https://doi.org/10.1016/j.molstruc.2020.128849

  68. Naseem Z, Shehzad RA, Ihsan A, Iqbal J, Zahid M, Pervaiz A, Sarwari G (2021) Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory. Chem Phys Lett 769:138427. https://doi.org/10.1016/j.cplett.2021.138427

  69. Fetisov EO, Harwood DB, Kuo I-FW, Warrag SEE, Kroon MC, Peters CJ, Siepmann JI (2018) First-Principles Molecular Dynamics Study of a Deep Eutectic Solvent: Choline Chloride/Urea and Its Mixture with Water. J Phys Chem B 122:1245-1254. https://doi.org/10.1021/acs.jpcb.7b10422

    Article  PubMed  CAS  Google Scholar 

  70. Ferreira ESC, Voroshylova IV, Figueiredo NM, Pereira CM, Cordeiro MNDS (2020) Computational and experimental study of propeline: A choline chloride based deep eutectic solvent. J Mol Liq 298:111978. https://doi.org/10.1016/j.molliq.2019.111978

  71. Ali MA, Rahman MS, Roy R, Gambill P, Raynie DE, Halim MA (2021) Structure Elucidation of Menthol-Based Deep Eutectic Solvent using Experimental and Computational Techniques. J Phys Chem A 125:2402-2412. https://doi.org/10.1021/acs.jpca.0c10735

    Article  PubMed  CAS  Google Scholar 

  72. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007-1023. https://doi.org/10.1063/1.456153

  73. De Proft F, Langenaeker W, Geerlings P (1993) Ab initio determination of substituent constants in a density functional theory formalism: calculation of intrinsic group electronegativity, hardness, and softness. J Phys Chem 97:1826-1831. https://doi.org/10.1021/j100111a018

    Article  Google Scholar 

  74. Křížek T, Bursová M, Horsley R, Kuchař M, Tůma P, Čabala R, Hložek T (2018) Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. J Clean Prod 193:391-396. https://doi.org/10.1016/j.jclepro.2018.05.080

    Article  CAS  Google Scholar 

  75. Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM (2015) Menthol-based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain Chem Eng 3:2469-2477. https://doi.org/10.1021/acssuschemeng.5b00532

    Article  CAS  Google Scholar 

  76. Hussin SA, Varanusupakul P, Shahabuddin S, Hui BY, Mohamad S (2020) Synthesis and characterization of green menthol-based low transition temperature mixture with tunable thermophysical properties as hydrophobic low viscosity solvent. J Mol Liq 308:113015. https://doi.org/10.1016/j.molliq.2020.113015

  77. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1-42. https://doi.org/10.1002/wcms.51

    Article  CAS  Google Scholar 

  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani  G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP,  Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.2.

  79. VanBesien E, Marques MPM (2003) Ab initio conformational study of caffeic acid. J Mol Struct THEOCHEM 625:265-275. https://doi.org/10.1016/S0166-1280(03)00026-5

    Article  CAS  Google Scholar 

  80. Webber AL, Yates JR, Zilka M, Sturniolo S, Uldry AC, Corlett EK, Pickard CJ, Pérez-Torralba M, Angeles Garcia M, Santa Maria D, Claramunt RM, Brown SP (2020) Weak Intermolecular CH···N Hydrogen Bonding: Determination of 13 CH-15 N Hydrogen-Bond Mediated J Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. J Phys Chem A 124:560-572. https://doi.org/10.1021/acs.jpca.9b10726

  81. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104-113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  82. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct THEOCHEM 169:41-62. https://doi.org/10.1016/0166-1280(88)80248-3

    Article  Google Scholar 

  83. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211-7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  84. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899-926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  85. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78:4066-4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  86. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735-746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  87. The Structure of Small Molecules and Ions (nd) https://springer.longhoe.net/book/10.1007/978-1-4684-7424-4 . (Accessed 8 Jul 2022)

  88. Rudyk R, Molina MAA, Gómez MI, Blanco SE, Ferretti FH (2004) Solvent effects on the structure and dipole moment of resorcinol. J Mol Struct THEOCHEM 674:7-14. https://doi.org/10.1016/j.theochem.2003.12.019

    Article  CAS  Google Scholar 

  89. Gerhards M, Perl W, Schumm S, Henrichs U, Jacoby C, Kleinermanns K (1996) Structure and vibrations of catechol and catechol⋅H 2 O(D 2 O) in the S 0 and S 1 state. J Chem Phys 104:9362-9375. https://doi.org/10.1063/1.471682

    Article  CAS  Google Scholar 

  90. Al-Ali KAH, Asmaeel SM (2010) Theoretical study of the Structure. Electronic Properties an 36:5

    Google Scholar 

  91. Härtner J, Reinscheid UM (2008) Conformational analysis of menthol diastereomers by NMR and DFT computation. J Mol Struct 872:145-149. https://doi.org/10.1016/j.molstruc.2007.02.029

    Article  CAS  Google Scholar 

  92. Ahn D-S, Park S-W, Lee S, Kim B (2003) Effects of Substituting Group on the Hydrogen Bonding in Phenol−H 2 O Complexes: Ab Initio Study. J Phys Chem A 107:131-139. https://doi.org/10.1021/jp021519f

    Article  CAS  Google Scholar 

  93. Jalili S, Akhavan M (2007) Study of hydrogen-bonded clusters of 2-methoxyphenol-water. Theor Chem Acc 118:947-957. https://doi.org/10.1007/s00214-007-0378-3

    Article  CAS  Google Scholar 

  94. Margenau H (1939) Van der waals forces. Rev Mod Phys 11:1-35. https://doi.org/10.1103/RevModPhys.11.1

    Article  CAS  Google Scholar 

  95. Bandyopadhyay I, Lee HM, Kim KS (2005) Phenol vs Water Molecule Interacting with Various Molecules: σ-type, π-type, and χ-type Hydrogen Bonds, Interaction Energies, and Their Energy Components. J Phys Chem A 109:1720-1728. https://doi.org/10.1021/jp0449657

    Article  PubMed  CAS  Google Scholar 

  96. Parthasarathi R, Subramanian V, Sathyamurthy N (2005) Hydrogen Bonding in Phenol, Water, and Phenol−Water Clusters. J Phys Chem A 109:843-850. https://doi.org/10.1021/jp046499r

    Article  PubMed  CAS  Google Scholar 

  97. Cesari L, Canabady-Rochelle L, Mutelet F (2018) Computational study of phenolic compounds-water clusters. Struct Chem 29:625-643. https://doi.org/10.1007/s11224-018-1081-9

    Article  CAS  Google Scholar 

  98. Gómez-Zaleta B, Gómez-Balderas R, Hernández-Trujillo J (2010) Theoretical analysis of hydrogen bonding in catechol-n(H2O) clusters (n = 0…3). Phys Chem Chem Phys 12:4783. https://doi.org/10.1039/b922203k

    Article  PubMed  CAS  Google Scholar 

  99. Cablé P-A, Le Brech Y, Mutelet F (2020) Liquid-liquid extraction of phenolic compounds from aqueous solution using hydrophobic deep eutectic solvents. J Mol Liq 366:120266. https://doi.org/10.1016/j.molliq.2022.120266

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Pierre-Alann Cable: calculation, investigation, methodology. Yann Le Brech: supervision, review. Fabrice Mutelet: supervision, project administration, writing- review and editing. The final version of the manuscript submitted was approved by all the authors.

Corresponding author

Correspondence to Fabrice Mutelet.

Ethics declarations

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Consent to participate

This article does not contain any studies involving animals performed by any of the authors.

Consent to publish

Author mentioned in the manuscript has given consent for submission and subsequent publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2289 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cablé, PA., Le Brech, Y. & Mutelet, F. Density functional theory investigation of interactions between phenolic compounds and water or hydrophobic deep eutectic solvent. Struct Chem 35, 321–339 (2024). https://doi.org/10.1007/s11224-023-02180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02180-6

Keywords

Navigation