Log in

The system of self-consistent QSPR-models for refractive index of polymers

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantitative structure–property/activity relationships (QSPRs/QSARs) are a component of modern natural science. The system of self-consistent models is a specific approach to build up QSPR/QSAR. A group of models of refractive index for different distributions in training and test sets is compared. This comparison is a basis to formulate the system of self-consistent models. The so-called index of ideality of correlation (IIC) has been used to improve the predictive potential of models of the refractive index of different polymers (n = 255). The predictive potential of the suggested models is high since the average value of the determination coefficient for the validation set is 0.885. In addition, the system of self-consistent models may be applied as a tool to assess the predictive potential of an arbitrary QSPR-approach. The statistical characteristics of the best model are the following: n = 57, R2 = 0.7764, RMSE = 0.039 (active training set) and n = 57, R2 = 0.9028, RMSE = 0.019 (validation set).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Data is available within the article or its supplementary materials.

Code availability

CORAL software (http://www.insilico.eu/coral).

References

  1. Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A, Romeo G, Pittalà V (2017) Comprehensive data on a 2D-QSAR model for heme oxygenase isoform 1 inhibitors. Data Brief 15:281–299. https://doi.org/10.1016/j.dib.2017.09.036

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E (2017) Development of a Sigma-2 receptor affinity filter through a Monte Carlo based QSAR analysis. Eur J Pharm Sci 106:94–101. https://doi.org/10.1016/j.ejps.2017.05.061

    Article  CAS  PubMed  Google Scholar 

  3. Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E (2017) Sigma-2 receptor ligands QSAR model dataset. Data Brief 13:514–535. https://doi.org/10.1016/j.dib.2017.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahmadi S, Aghabeygi S, Farahmandjou M, Azimi N (2021) The predictive model for band gap prediction of metal oxide nanoparticles based on quasi-SMILES. Struct Chem 32(5):1893–1905. https://doi.org/10.1007/s11224-021-01748-4

    Article  CAS  Google Scholar 

  5. Perić V, Golubović M, Lazarević M, Marjanović V, Kostić T, Đorđević M, Milić D, Veselinović AM (2021) Development of potential therapeutics for pain treatment by inducing Sigma 1 receptor antagonism-: in silico approach. New J Chem 45(27):12286–12295. https://doi.org/10.1039/d1nj00883h

    Article  CAS  Google Scholar 

  6. Wang W, Yang B, Jia X (2021) Predicting the melting point of imidazole-based ionic liquids using QSPR model based on SMILES optimal descriptors. IOP Conf Ser Earth Environ Sci 859(1):012084. https://doi.org/10.1088/1755-1315/859/1/012084

    Article  Google Scholar 

  7. Lotfi S, Ahmadi S, Kumar P (2021) A hybrid descriptor based QSPR model to predict the thermal decomposition temperature of imidazolium ionic liquids using Monte Carlo approach. J Mol Liq 338:116465. https://doi.org/10.1016/j.molliq.2021.116465

    Article  CAS  Google Scholar 

  8. De Almeida FB, De Abreu HA, Diniz R (2019) Theoretical calculations of a porous coordination polymer formed by isonicotinylhydrazine, 1,4-benzenedicarboxylic and Co2+: electronic properties, lithium do**, and H2 adsorption studies. Struct Chem 30(6):2369–2377. https://doi.org/10.1007/s11224-019-01367-0

    Article  CAS  Google Scholar 

  9. Eslami M, Nikkhah SJ, Eslami E, Hashemianzadeh SM (2020) A new insight into encapsulation process of a drug molecule in the polymer/surfactant system: a molecular simulation study. Struct Chem 31(5):2051–2062. https://doi.org/10.1007/s11224-020-01550-8

    Article  CAS  Google Scholar 

  10. Ronova IA, Ponomarev II (2019) Design of monomeric units for rigid aromatic polymers. Struct Chem 30(5):1611–1627. https://doi.org/10.1007/s11224-019-01356-3

    Article  CAS  Google Scholar 

  11. Zhu K, Chen L, ** X, Qu C (2019) Two Cu(II) coordination polymers based on benzene-1,3,5-tricarboxylate and 1,2,4-triazolide ligands: their crystal structures and application of nanoparticles in anti-esophageal cancer activity evaluation. Struct Chem 30(4):1485–1494. https://doi.org/10.1007/s11224-019-01301-4

    Article  CAS  Google Scholar 

  12. Peng J-H, Wang X-L, Ran L, Song J-L, Zhang X, Li H-Y (2018) Crystal structures and anti-breast cancer activities of two new coordination polymers [Co2(bpdc)2(bibt)1.5](H2O)2 and [Gd(bpdc)2(Hbpp)](H2O)3. Struct Chem 29(6):1671–1675. https://doi.org/10.1007/s11224-018-1145-x

  13. Luo Y-N, Jiang H-Y, Liu Z-C, Yu L-Y, Yu X-Y (2018) A new zinc coordination polymer constructed from 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid: synthesis, structure, and photoelectrical property. Struct Chem 29(4):977–982. https://doi.org/10.1007/s11224-018-1079-3

    Article  CAS  Google Scholar 

  14. Shu Y, Zhang S, Shu Y, Liu N, Yi Y, Huo J, Ding X (2019) Interactions and physical properties of energetic poly-(phthalazinone ether sulfone ketones) (PPESKs) and ε-exanitrohexaazaisowurtzitane (ε-CL-20) based polymer bonded explosives: a molecular dynamics simulations. Struct Chem 30(3):1041–1055. https://doi.org/10.1007/s11224-018-1225-y

    Article  CAS  Google Scholar 

  15. Röding M, Fager C, Olsson A, von Corswant C, Olsson E, Lorén N (2021) Three-dimensional reconstruction of porous polymer films from FIB-SEM nanotomography data using random forests. J Microsc 281(1):76–86. https://doi.org/10.1111/jmi.12950

    Article  CAS  PubMed  Google Scholar 

  16. Nagasawa S, Al-Naamani E, Saeki A (2018) Computer-aided screening of conjugated polymers for organic solar cell: classification by random forest. J Phys Chem Lett 9(10):2639–2646. https://doi.org/10.1021/acs.jpclett.8b00635

    Article  CAS  PubMed  Google Scholar 

  17. Fazilat H, Ghatarband M, Mazinani S, Asadi ZA, Shiri ME, Kalaee MR (2012) Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system. Comput Mater Sci 58:31–37. https://doi.org/10.1016/j.commatsci.2012.01.012

    Article  CAS  Google Scholar 

  18. Weininger D (1988) SMILES, a chemical language and information system: 1: introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  19. Jabeen F, Chen M, Rasulev B, Ossowski M, Boudjouk P (2017) Refractive indices of diverse data set of polymers: a computational QSPR based study. Comput Mater Sci 137:215–224. https://doi.org/10.1016/j.commatsci.2017.05.022

    Article  CAS  Google Scholar 

  20. Schustik SA, Cravero F, Ponzoni I, Díaz MF (2021) Polymer informatics: expert-in-the-loop in QSPR modeling of refractive index. Comput Mater Sci 194:110460. https://doi.org/10.1016/j.commatsci.2021.110460

    Article  CAS  Google Scholar 

  21. Duchowicz PR, Fioressi SE, Bacelo DE, Saavedra LM, Toropova AP, Toropov AA (2015) QSPR studies on refractive indices of structurally heterogeneous polymers. Chemometr Intell Lab Syst 140:86–91. https://doi.org/10.1016/j.chemolab.2014.11.008

    Article  CAS  Google Scholar 

  22. Toropov AA, Toropova AP, Kudyshkin VO, Bozorov NI, Rashidova SSh (2020) Applying of the Monte Carlo technique to build up models of glass transition temperatures of diverse polymers. Struct Chem 31:1739–1743. https://doi.org/10.1007/s11224-020-01588-8

    Article  CAS  Google Scholar 

  23. Toropova AP, Toropov AA, Benfenati E (2021) The self-organizing vector of atom-pairs proportions: use to develop models for melting points. Struct Chem 32(3):967–971. https://doi.org/10.1007/s11224-021-01778-y

    Article  CAS  Google Scholar 

  24. Toropov AA, Toropova AP (2018) Predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cells using index of ideality of correlation. Anticancer Res 38(11):6189–6194. https://doi.org/10.21873/anticanres.12972

    Article  CAS  PubMed  Google Scholar 

  25. Toropova AP, Toropov AA, Kudyshkin VO, Rallo R (2015) Prediction of the Q-e parameters from structures of transfer chain agents. J Polym Res 22:128. https://doi.org/10.1007/s10965-015-0778-3

    Article  CAS  Google Scholar 

  26. Kudyshkin VO, Toropov AA, Rashidova SSh (2020) Constants of chain transmission in the radical polymerization as a mathematical function of the molecular structure of monomers and regulators, which are presented by SMILES. MDPI AG in MOL2NET 2020, International Conference on Multidisciplinary Sciences, 6th edition session CHEMINFOUNC-02: Chemoinformatics Workshop, UNC Chape Hill, USA. Published 09 October 2020. https://doi.org/10.3390/mol2net-06-06945

  27. Ding X, Kang D, Sun L, Zhan P, Liu X (2022) Combination of 2D and 3D-QSAR studies on DAPY and DANA derivatives as potent HIV-1 NNRTIs. J Mol Struct 1249:131603. https://doi.org/10.1016/j.molstruc.2021.131603

    Article  CAS  Google Scholar 

  28. Duhan M, Kumar P, Sindhu J, Singh R, Devi M, Kumar A, Kumar R, Lal S (2021) Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Comput Biol Med 138:104876. https://doi.org/10.1016/j.compbiomed.2021.104876

    Article  CAS  PubMed  Google Scholar 

  29. Kumar A, Kumar P (2021) Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking. Struct Chem 32(1):149–165. https://doi.org/10.1007/s11224-020-01629-2

    Article  CAS  Google Scholar 

  30. Kumar A, Kumar P (2021) Prediction of power conversion efficiency of phenothiazine-based dye-sensitized solar cells using Monte Carlo method with index of ideality of correlation. SAR QSAR Environ Res 32(10):817–834. https://doi.org/10.1080/1062936X.2021.1973095

    Article  CAS  PubMed  Google Scholar 

  31. Ghiasi T, Ahmadi S, Ahmadi E, Talei Bavil Olyai MR, Khodadadi Z (2021) The index of ideality of correlation: QSAR studies of hepatitis C virus NS3/4A protease inhibitors using SMILES descriptors. SAR QSAR Environ Res 32(6):495–520. https://doi.org/10.1080/1062936X.2021.1925344

    Article  CAS  PubMed  Google Scholar 

  32. Jafari K, Fatemi MH (2020) Application of nano-quantitative structure–property relationship paradigm to develop predictive models for thermal conductivity of metal oxide-based ethylene glycol nanofluids. J Therm Anal Calorim 142(3):1335–1344. https://doi.org/10.1007/s10973-019-09215-3

    Article  CAS  Google Scholar 

  33. Duhan M, Singh R, Devi M, Sindhu J, Bhatia R, Kumar A, Kumar P (2021) Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as α-amylase inhibitor. J Biomol Struct Dyn 39(1):91–107. https://doi.org/10.1080/07391102.2019.1704885

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the contribution of the project LIFE-VERMEER (LIFE16 ENV/IT/000167).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.P.T., A.A.T., and V.O.K.; methodology, A.P.T., A.A.T., and V.O.K.; software, A.A.T.; validation, A.P.T., A.A.T., and V.O.K.; data curation, A.P.T., A.A.T., V.O.K.; writing—original draft preparation, A.P.T., A.A.T., and V.O.K.; writing—review and editing, A.P.T., A.A.T., and V.O.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Andrey A. Toropov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11224_2021_1875_MOESM1_ESM.xlsx

Supplementary file1 section contains details on the model calculated with Eq. 17 i.e. Table S1 contains experimental and calculated values of RI; Table S2 contains the numerical data on the SMILES attributes and corresponding correlation weights. The similar data on split #2 - #5 is available on request. (XLSX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropov, A.A., Toropova, A.P. & Kudyshkin, V.O. The system of self-consistent QSPR-models for refractive index of polymers. Struct Chem 33, 617–624 (2022). https://doi.org/10.1007/s11224-021-01875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01875-y

Keywords

Navigation