Log in

Mode I and Mode II Cyclic Crack Resistance of Wheel Steel

  • Published:
Strength of Materials Aims and scope

The characteristics of the mode I and mode II cyclic crack resistance of model wheel steel are compared. The effect of heat treatment of test steel on its microstructure parameters, as well as strength and cyclic crack resistance characteristics, is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. D. H. Stone and G. J. Moyar, “Wheel shelling and spalling – an interpretive review,” in: Rail Transportation, ASME, New York (1989), pp. 19–31.

  2. J. J. Marais, “Wheel failures on heavy haul freight wheels due to subsurface effects,” in: Proc. of the 12th Int. Wheelset Congress, Qingdao, China (1998), pp. 306–314.

  3. P. J. Mutton, C. J. Epp, and J. Dudek, “Rolling contact fatigue in railway wheels under high axle loads,” Wear, 144, Nos. 1–2, 139–152 (1991).

    Article  Google Scholar 

  4. H. A. Richard, M. Fulland, M. Sander, and G. Kullmer, “Fracture in a rubber-sprung railway wheel,” Eng. Fail. Anal., 12, No. 6, 986–999 (2005).

    Article  Google Scholar 

  5. H. A. Richard, M. Sander, M. Fulland, and G. Kullmer, “Development of fatigue crack growth in real structures,” Eng. Fract. Mech., 75, Nos. 3–4, 331–340 (2005).

  6. T. Snyder, Personal Meeting, November, 2003.

  7. K. Handa, Y. Kimura, and Y. Mishima, “Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat,” Wear, 268, Nos. 1–2, 50–58 (2010).

    Article  Google Scholar 

  8. A. Ekberg and J. Marais, “Effects of imperfections on fatigue initiation in railway wheels,” J. Rail Rapid Transit, 214, No. 1, 45–54 (1999).

    Article  Google Scholar 

  9. A. Ekberg and P. Sotkovszki, “Anisotropy and fatigue of railway wheels,” Int. J. Fatigue, 23, No. 1, 29–43 (2001).

    Article  Google Scholar 

  10. E. Kabo and A. Ekberg, “Fatigue initiation in railway wheels – a numerical study on the influence of defects,” Wear, 253, Nos. 1–2, 26–34 (2002).

    Article  Google Scholar 

  11. S. Beretta, G. Donzella, R. Roberti, and A. Ghidini, “Deep shelling in railway wheels,” in: Proc. of the 13th Int. Wheelset Congress, Rome, Italy (2001), pp. 17–21.

  12. A. Ekberg, E. Kabo, and H. Andersson, “An engineering model for prediction of rolling contact fatigue of railway wheels,” Fatigue Fract. Eng. Mater. Struct., 25, No. 10, 899–909 (2002).

    Article  Google Scholar 

  13. J. W. Ringsberg, M. Loo-Morrey, B. L. Josefson, et al., “Prediction of fatigue crack initiation for rolling contact fatigue,” Int. J. Fatigue, 22, No. 3, 205–215 (2000).

    Article  Google Scholar 

  14. L. M. Keer, M. D. Bryant, and G. H. Haritos, “Subsurface and surface cracking due to hertzian contact,” J. Lubr. Technol., 104, No. 3, 347–351 (1982).

    Article  Google Scholar 

  15. H. M. Tournay and J. M. Mulder, “The transition from the wear to the stress regime,” Wear, 191, Nos. 1–2, 107–112 (1996).

    Article  Google Scholar 

  16. O. P. Ostash, V. H. Anofriev, I. M. Andreiko, et al., “On the concept of selection of steels for high-strength railroad wheels,” Mater. Sci., 48, No. 6, 697–703 (2013).

    Article  Google Scholar 

  17. A. Bernasconi, M. Filippini, S. Foletti, and D. Vaudo, “Multiaxial fatigue of a railway wheel steel under non-proportional loading,” Int. J. Fatigue, 28, Nos. 5–6, 663–672 (2006).

    Article  Google Scholar 

  18. A. Meizoso, J. M. Esnaola, and M. Pérez, “Approximate crack growth estimate of railway wheel influenced by normal and shear action,” Theor. Appl. Fract. Mech., 15, No. 2, 179–190 (1991).

    Article  Google Scholar 

  19. Y. Murakami, C. Sakae, and S. Hamada, “Mechanism of rolling contact fatigue and measurement of ∆K IIth for steels,” in: J. H. Beynon, M. W. Brown, T. C. Lindley, et al. (Eds.), Engineering Against Fatigue, A. A. Balkema Publ., Rotterdam (1999), pp. 473–485.

    Google Scholar 

  20. ASTM E 647-93. Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards, Vol. 03.01, Philadelphia, PA (1994), pp. 569–596.

  21. M. Clarke, Wheel Rolling Contact Fatigue (RCF) and Rim Defects Investigation to Further Knowledge of the Causes of RCF and to Determine Control Measures, in: RSSB Wheel Steel Guide, Project T672 (2008).

  22. Ya. L. Ivanyts’kyi, T. M. Lenkovs’kyi, V. M. Boiko, and S. T. Shtayura, “Methods for the construction of the kinetic diagrams of fatigue fracture for steels under the conditions of transverse shear with regard for the friction of crack lips,” Mater. Sci., 49, No. 6, 749–754 (2014).

    Article  Google Scholar 

  23. V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes, Vol. 4: O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, et al., Fatigue and Cycle Crack Resistance of Structural Materials, Naukova Dumka, Kiev (1990).

  24. O. N. Romaniv, Fracture Toughness of Structural Steels [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  25. O. P. Ostash, A. I. Babachenko, I. M. Andreiko, et al., “Structural fracture mechanics and service reliability of railway wheels,” in: Fundamental and Applied Problems of Ferrous Metallurgy [in Russian], Collected Papers, Issue 20, Dnepropetrovsk (2009), pp. 246–253.

  26. O. N. Romaniv, Ya. N. Gladkii, and Yu. V. Zima, “Effect of structural factors on the kinetics of fatigue cracks in constructional steels,” Mater. Sci., 14, No. 2, 113–123 (1978).

    Article  Google Scholar 

  27. R. O. Ritchie, “Near-threshold fatigue crack propagation in ultra-high strength steel: influence of load ratio and cyclic strength,” J. Eng. Mater. – T. ASME, No. 3, 195–204 (1977).

    Article  Google Scholar 

  28. R. O. Ritchie, “Near-threshold fatigue-crack propagation in steels,” Int. Met. Rev., 24, Nos. 5–6, 205–230 (1979).

    Google Scholar 

  29. R. J. Cooke, P. E. Irwing, G. S. Booth, and C. J. Beevers, “The slow fatigue crack growth and threshold behaviour of a medium carbon alloy steel in air and vacuum,” Eng. Fract. Mech., 7, No. 1, 69–77 (1975).

    Article  Google Scholar 

  30. J. Mautz and V. Weiss, “Mean stress environmental effects on near threshold fatigue crack growth,” in: Cracks and Fracture, ASTM STP 601, Philadelphia (1976), pp. 154–168.

  31. O. N. Romaniv and A. N. Tkach, “A structural analysis of the kinetic fatigue failure curves of constructional steels,” Mater. Sci., 23, No. 5, 441–453 (1987).

    Article  Google Scholar 

  32. R. J. Cooke and C. I. Beevers, “The effect of load ratio on the threshold level for fatigue crack growth in medium carbon steels,” Eng. Fract. Mech., 5, No. 4, 1061–1071 (1973).

    Article  Google Scholar 

  33. C. J. Beevers, R. J. Cooke, J. F. Knott, and R. O. Ritchie, “Some considerations the influence of subcritical cleavage growth during fatigue crack propagation in steels,” Met. Sci., 9, No. 3, 119–126 (1975).

    Article  Google Scholar 

  34. S. Ya. Yarema, V. V. Popovich, and Yu. V. Zima, “Influence of structure on the resistance of 65G steel to fatigue crack growth,” Mater. Sci., 18, No. 1, 13–26 (1982).

    Article  Google Scholar 

  35. Y. Murakami, K. Takahashi, and R. Kusumoto, “Threshold and growth mechanism of fatigue cracks under mode II and III loadings,” Fatigue Fract. Eng. Mater. Struct., 26, No. 6, 523–531 (2003).

    Article  Google Scholar 

  36. Y. Murakami, Y. Fukushima, K. Toyama, and S. Matsuoka, “Fatigue crack path and threshold in Mode II and Mode III loadings,” Eng. Fract. Mech., 75, Nos. 3–4, 306–318 (2008).

    Article  Google Scholar 

  37. Y. Murakami, T. Fukuhara, and S. Hamada, “Measurement of Mode II threshold stress intensity range ∆K IIth ,” J. Soc. Mater. Sci., 51, No. 8, 918–925 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kulyk.

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 56 – 63, March – April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyk, V.V., Lenkovs’kyi, T.M. & Ostash, O.P. Mode I and Mode II Cyclic Crack Resistance of Wheel Steel. Strength Mater 49, 256–262 (2017). https://doi.org/10.1007/s11223-017-9865-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-017-9865-5

Keywords

Navigation