Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Literature cited

  1. RD 50-345-82. Method Instructions. Calculations and Tests for Strength in Machine Building. Methods of Mechanical Tests of Metals. Determination of the Characteristics of Crack Resistance (Fracture Toughness) in Cyclic Loading [in Russian], Standartov, Moscow (1983).

  2. S. Ya. Yarema and L. S. Mel'nichok, “An investigation of mathematical models of fatigue crack growth,” Fiz.-Khim. Mekh. Mater., No. 4, 55–61 (1982).

    Google Scholar 

  3. S. Ya. Yarema, “The correlation of the parameters of the Paris equation and the characteristics of cyclic crack resistance of materials,” Probl. Prochn., No. 9, 20–28 (1981).

    Google Scholar 

  4. T. C. Lindley, C. E. Richards, and R. O. Ritchie, “Mechanics and mechanisms of fatigue crack growth in metals: A review,” Metal. Met. Form.,43, No. 4, 268–280 (1975).

    Google Scholar 

  5. S. Ya. Yarema, V. V. Popovich, and Yu. V. Zima, “The influence of structure on the fatigue crack growth resistance of 65G steel,” Fiz.-Khim. Mekh. Mater., No. 1, 16–30 (1982).

    Google Scholar 

  6. O. N. Romaniv, A. N. Tkach, and V. N. Simin'kovich, “The structure and near-threshold fatigue of steels,” ibid., No. 4, 19–33 (1983).

    Google Scholar 

  7. D. A. Taylor, Compendium of Fatigue Threshold and Growth Rates [in Russian], EMAS, Warley (1985).

    Google Scholar 

  8. Fatigue Thresholds: Proceedings of the International Symposium on Fatigue Thresholds, Vol. 1–3, Stockholm (1981).

  9. Fatigue-84: Proceedings of the 2nd International Symposium on Fatigue Thresholds, EMAS, Birmingham, UK (1984).

  10. R. O. Ritchie, “Near-threshold fatigue crack propagation in steels,” Int. Met. Rev., No. 245, 205–230 (1979).

    Google Scholar 

  11. F. J. Cook and C. J. Beevers, “slow fatigue crack propagation in pearlitic steels,” Mater. Sci. Eng.,13, No. 1–3, 201–210 (1974).

    Google Scholar 

  12. P. K. Liaw, A. Saxena, V. P. Swaminathan, and T. T. Shih, “Effects of load ratio and temperature on the near-threshold crack propagation behavior in a CrMoV steel,” Met. Trans.,14A, No. 9, 1631–1640 (1983).

    Google Scholar 

  13. C. J. Beevers, “Micromechanisms of fatigue crack growth characteristics at low stress intensities of metals and alloys,” Metal. Sci.,14, No. 8–9, 418–423 (1980).

    Google Scholar 

  14. V. V. Larionov and I. A. Makhutov, “Determination of the threshold values of the stress intensity factor,” Zavod. Lab.,44, No. 6, 739–742 (1978).

    Google Scholar 

  15. K. Nishioka, K. Hiragawa, and J. Kitaura, “Fatigue crack propagation behaviours of various steels,” Sumimoto Search,17, No. 5, 39–51 (1977).

    Google Scholar 

  16. S. Suresh, G. F. Zamiski, and R. O. Ritchie, “Oxide-induced crack closure: an explanation for near-threshold corrosion fatigue crack behavior,” Met. Trans.,12A, No. 8, 1435–1445 (1981).

    Google Scholar 

  17. O. N. Romaniv, E. A. Shur, A. N. Tkach, et al., “The kinetics and mechanism of fatigue crack growth in iron,” Fiz.-Khim. Mekh. Mater., No. 2, 57–66 (1981).

    Google Scholar 

  18. S. Ya. Yarema, A. Ya. Krasovskii, O. P. Ostash, and V. A. Stepanenko, “The development of fatigue failure in low-carbon sheet steel at room and low temperatures,” Probl. Prochn., No. 3, 21–26 (1977).

    Google Scholar 

  19. A. N. Tkach, O. N. Romaniv, V. N. Simin'kovich, et al., “Fatigue crack propagation in a steel prone to deformation twinning,” Fiz.-Khim. Mekh. Mater., No. 2, 67–73 (1982).

    Google Scholar 

  20. O. N. Romaniv, E. A. Shur, V. N. Simin'kovich, et al., “The crack resistance of pearlitic eutectoid steels. II. Failure of steels in cyclic loading”, ibid., No. 2, 37–45 (1983).

    Google Scholar 

  21. A. N. Tkach, N. M. Fonshtein, V. N. Simin'kovich, et al., “Fatigue crack growth in duplex ferritic-martensitic steel,” ibid., No. 5, 45–51 (1984).

    Google Scholar 

  22. K. Minakawa, Y. Matsuo, and A. McEvily, “The influence of duplex microstructure in steels on fatigue crack growth in near-threshold region,” Met. Trans.,13A, No. 3, 439–445 (1982).

    Google Scholar 

  23. J. A. Wasynczuk, R. O. Ritchie, and G. Thomas, “Effect of microstructure on fatigue crack growth in duplex ferrite-martensite steels,” Mater. Sci. Eng.,62, No. 1, 79–92 (1984).

    Google Scholar 

  24. O. N. Romaniv, Ya. N. Gladkii, and Yu. V. Zima, “The influence of structural factors on fatigue crack kinetics in constructional steels,” Fiz.-Khim. Mekh. Mater., No. 2, 3–15 (1978).

    Google Scholar 

  25. O. N. Romaniv, G. N. Nikiforchin, and B. N. Andrusiv, “The effect of crack closure and evaluation of the cyclic crack resistance of constructional alloys,” ibid., No. 3, 47–61 (1983).

    Google Scholar 

  26. G. T. Gray, III, J. C. Williams, and A. W. Thompson, “Roughness-induced crack closure: an explanation for microstructurally sensitive fatigue crack growth,” Met. Trans.,14A, No. 3, 421–433 (1983).

    Google Scholar 

  27. R. O. Ritchie, “Near-threshold fatigue crack propagation in ultrahigh strength steel; influence of load ratio and cyclic strength,” Trans ASME,H99, No. 3, 195–204 (1977).

    Google Scholar 

  28. J. Toplosky and R. O. Ritchie, “On the influence of gaseous hydrogen in deceleration of fatigue crack growth rates in ultrahigh strength steels,” Scr. Met.,15, 905–908 (1981).

    Google Scholar 

  29. O. N. Romaniv, G. N. Nikiforchin, and L. Yu. Kozak, “The structural sensitivity of the cyclic crack resistance of rotor steel in gaseous hydrogen,” Fiz.-Khim. Mekh. Mater., No. 5, 20–26 (1984).

    Google Scholar 

  30. V. N. Simin'kovich, “The rules of near-threshold fatigue crack growth in constructional steels,” Author's Abstract of Candidate's Thesis, Technical Sciences, Lvov (1983).

    Google Scholar 

  31. S. Taira, K. Tanaka, and M. Nashida, “Grain size effect on crack nucleation and growth in long-life fatigue on low-carbon steel,” in: Fatigue Mechanisms. STP 675, ASTM, Philadelphia (1979), pp. 135–162.

    Google Scholar 

  32. Y. Muton and V. M. Radhakrishnan, “Effect of yield stress and grain size on threshold and fatigue limit,” Trans. ASME,108, No. 4, 174–178 (1986).

    Google Scholar 

  33. J. P. Benson and D. V. Edmonds, “Effects of microstructure on fatigue in threshold region in low-alloy steel,” Metal. Sci.,12, No. 5, 223–232 (1978).

    Google Scholar 

  34. Makoto Saito, Yudzi Toeta, and Sadao Ota, “The influence of cold working on the character of fatigue crack propagation in specimens of S35C steel,” Tetsu to Hagane, J. Iron Steel Inst. Jpn.,65, No. 4, 434 (1979).

    Google Scholar 

  35. W. Yu, K. Esaklul, and W. W. Gerberich, “Fatigue threshold studies in Fe-Si and HSLA steel. Part II. Thermally activated behavior on the effective stress intensity at thresholds,” Met. Trans.,15A, No. 5, 889–900 (1984).

    Google Scholar 

  36. O. P. Ostash, V. T. Zhmur-Klimenko, E. M. Kostyk, and A. B. Kunovskii, “The influence of crack closure and load cycle asymmetry on the kinetic fatigue failure curves at normal and low temperatures,” Fiz.-Khim. Mekh. Mater., No. 3, 58–63 (1987).

    Google Scholar 

  37. V. G. Dutta, S. Surech, and R. O. Ritchie, “Fatigue crack propagation in dual-phase steels: effects on ferrite-martensite microstructure in near-threshold region,” Met. Trans.,A15, No. 8, 1193–1207 (1984).

    Google Scholar 

  38. O. N. Romaniv, A. N. Tkach, Ya. N. Gladkii, and Yu. V. Zima, “The fracture toughness of steel with a martensitic-ferritic structure,” Fiz.-Khim. Mekh. Mater., No. 3, 31–36 (1977).

    Google Scholar 

  39. O. N. Romaniv, A. N. Tkach, and G. N. Nikiforchyn, “The influence of microstructure and environment on the near threshold crack propagation in iron-based alloys,” in: High-Purity Materials in Science and Technology: Proceedings of the 6th International Symposium, Dresden, 1985, Vol. 3, pp. 179–195.

    Google Scholar 

  40. O. N. Romaniv, “The structural concept of fatigue thresholds of constructional alloys,” Fiz.-Khim. Mekh. Mater., No. 1, 106–116 (1986).

    Google Scholar 

  41. O. N. Romaniv, A. N. Tkach, and Yu. N. Lenets, “The possible breakdown in invariance of kinetic fatigue failure curves caused by the occurrence of crack closure,” ibid., No. 6, 62–70 (1984).

    Google Scholar 

  42. S. Ya. Yarema and Q. D. Zinyuk, “The cyclic crack resistance of magnesium alloys in vacuum and humid and highly dried air,” ibid., No. 4, 26–34 (1986).

    Google Scholar 

  43. S. Matsuoka, S. Mishijima, S. Matsuda, and S. Ohtsubo, “Near-threshold fatigue crack behaviour in air at room temperature for various stainless steels,” in: Advances in Fracture Mechanics Research, Pergamon Press, Oxford, etc. (1984), pp. 1561–1571.

    Google Scholar 

  44. T. Yokobori, A. T. Yokobori, and A. Kamei, “Dislocation dynamics theory for fatigue crack growth,” Int. J. Fract.,11, No. 6, 781–788 (1975).

    Google Scholar 

  45. K. Sadananda, “Factors governing near-threshold fatigue crack growth,” in: Fatigue-84, EMAS, Warley (1984), pp. 543–551.

    Google Scholar 

  46. P. K. Leaw, T. R. Leax, and W. A. Logsdon, “Near-threshold fatigue crack growth behavior in metals,” Acta Met.,31, No. 10, 1581–1583 (1983).

    Google Scholar 

  47. O. N. Romaniv, G. N. Nikiforchin, and B. N. Andrusiv, “The influence of fatigue crack closure and geometry on the structural sensitivity of near-threshold fatigue of steels,” Fiz.-Khim. Mekh. Mater., No. 1, 71–77 (1984).

    Google Scholar 

  48. S. Ya. Yarema and E. L. Kharish, “The relationship of the length of the period of crack development in repeated impact loading to test temperature,” Probl. Prochn., No. 8, 28–32 (1970).

    Google Scholar 

  49. V. T. Troshchenko (ed.), Cyclic Deformations and the Fatigue of Metals [in Russian], Vol. 2, The Life of Metals Taking into Consideration Service and Production Factors, Naukova Dumka, Kiev (1985).

    Google Scholar 

  50. O. N. Romaniv, The Fracture Toughness of Constructional Steels [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  51. Standardization of the Fractographic Method of Evaluation of the Rate of Fatigue Failure of Metals [in Russian], No. 5, Standartov, Moscow (1984).

  52. K. Namberg and B. Karlsson, “Crack propagation in coarse two-phase steels,” in: Strength of Metals and Alloys: Proceedings of the 5th International Conference, Aachen, 1975, Vol. 2, pp. 1261–1266.

    Google Scholar 

  53. P. T. Heald, T. C. Lindley, and C. E. Richards, “The influence of stress intensity and microstructure on fatigue crack propagation in a 1% carbon steel,” Met. Sci. and Eng.,10, No. 4, 235–240 (1972).

    Google Scholar 

  54. Tzu-Ye-Shin and T. Azaki, “Effect of nonmetallic inclusions and microstructure on the fatigue crack initiation and propagation in high strength carbon steels,” J. Iron Steel Inst.,13, No. 1, 11–19 (1973).

    Google Scholar 

  55. Ya. N. Gladkii, V. N. Simin'kovich, G. A. Khasin, et al., “The influence of melting method and ladle refining on the fatigue and crack resistance of high-strength low-temperature tempered steels,” Fiz.-Khim. Mekh. Mater., No. 4, 102–106 (1978).

    Google Scholar 

  56. S. M. El-Soudani and R. M. Pelloux, “influence of inclusion content on fatigue crack propagation in aluminum alloys,” Met. Trans.,4, No. 2, 519–531 (1973).

    Google Scholar 

  57. A. D. Wilson, “Fractographic characterization of the effect of inclusions on fatigue crack propagation,” in: Proceedings of the Symposium on Fractography and Material Science, Williamsburg, 1982, pp. 166–186.

  58. O. P. Ostash and V. T. Zhmur-Klimenko, “Fatigue crack growth in metals at low temperatures (a review),” Fiz.-Khim. Mekh. Mater., No. 2, 17–29 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From the materials of papers for the First All-Union Conference on “Fracture Mechanics of Materials” (Lvov, October 20–22, 1987).

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 23, No. 5, pp. 3–16, September–October, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romaniv, O.N., Tkach, A.N. A structural analysis of the kinetic fatigue failure curves of constructional steels. Mater Sci 23, 441–453 (1987). https://doi.org/10.1007/BF01148669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148669

Keywords

Navigation