Log in

Comparing the Correlations Between Solar Cycle Parameters in the Northern and Southern Hemispheres

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The correlations between the parameters of Solar Cycles 12 – 24 for the smoothed monthly mean sunspot numbers of the total [\(R_{\mathrm{T}}\)], northern [\(R_{\mathrm{N}}\)], and southern [\(R_{\mathrm{S}}\)] hemispheres are compared using the newly reconstructed hemispheric sunspot numbers. The main conclusions are as follows: i) the maximum amplitude [\(R_{\mathrm{max}}\)] is inversely correlated [\(r=-0.54\)] with the rise time [\(T_{\mathrm{a}}\)] of the cycle in the southern hemisphere [SH], while in the northern hemisphere [NH], they are positively correlated [\(r=0.36\)], not satisfying the Waldmeier effect; ii) the positive correlation between \(R_{\mathrm{max}}\) and the preceding cycle minimum [\(R_{\mathrm{min}}\)] in the SH [\(r=0.51\)] is much stronger than that in the NH [\(r=0.21\)]; iii) the decay time [\(T_{\mathrm{d}}\)] is found to be strongly anti-correlated with \(T_{\mathrm{a}}\) in the NH [\(r=-0.83\)], and this correlation is weaker in the SH [\(r=-0.50\)]; iv) the negative correlation between \(R_{\mathrm{max}}\) and the cycle length [\(P=T_{\mathrm{a}}+T_{\mathrm{d}}\)] in the NH [\(r=-0.51\)] is much stronger than that in the SH [\(r=-0.18\)]; and v) the correlation in even-numbered cycles tends to be much stronger than in odd-numbered ones. These seem to imply that the solar activity in the northern hemisphere evolves partially differently from that in the southern hemisphere. These results might provide constraints on dynamo models in both hemispheres. However, the correlations depend on the timings of solar minima and maxima, which are related to the smoothing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

The monthly mean and smoothed monthly mean hemispheric sunspot numbers (Veronig et al., 2021) are downloaded from the Sunspot Index and Long-term Solar Observations (SILSO) website (wwwbis.sidc.be/silso/extheminum). The “13-month running mean total sunspot numbers” of the second [V2] version were also downloaded from the SILSO website (wwwbis.sidc.be/silso/DATA/SN_ms_tot_V2.0.txt), Royal Observatory of Belgium, Brussels.

References

  • Berdyugina, S.V., Usoskin, I.G.: 2003, Active longitudes in sunspot activity: century scale persistence. Astron. Astrophys. 405, 1121. DOI.

    Article  ADS  Google Scholar 

  • Bracewell, R.N.: 1986, Simulating the sunspot cycle. Nature 323, 516. DOI.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801. DOI.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys. J. 685, 1291. DOI.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Kilcik, A., Yurchyshyn, V., Obridko, V.N., Rozelot, J.P.: 2019, Analysis of the hemispheric sunspot number time series for the Solar Cycles 18 to 24. Solar Phys. 294, 142. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291, 2629. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Cliver, E., Lefèvre, L., Svalgaard, L., Vaquero, J., Leibacher, J.: 2016, Preface to topical issue: recalibration of the sunspot number. Solar Phys. 291, 2479. DOI.

    Article  ADS  Google Scholar 

  • Deng, L.H., **ang, Y.Y., Qu, Z.N., An, J.M.: 2016, Systematic regularity of hemispheric sunspot areas over the past 140 years. Astron. J. 151, 70. DOI.

    Article  ADS  Google Scholar 

  • Dicke, R.H.: 1988, The phase variations of the solar cycle. Solar Phys. 115, 171. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2006, A prediction of the onset of solar cycle 24. Astron. Astrophys. 457, 309. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2020, Predicting the amplitude of Solar Cycle 25 using the value 39 months before the solar minimum. Solar Phys. 295, 147. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Du, S.Y.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2010, Does a low solar cycle minimum hint at a weak upcoming cycle. Res. Astron. Astrophys. 10, 950. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2012, Predicting the solar maximum with the rising rate. Sci. China Ser. G, Phys. Mech. Astron. 55, 365. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N., He, X.T.: 2006, The relation between the amplitude and the period of solar cycles. Chin. J. Astron. Astrophys. 6, 489. DOI.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. Zh. 25, 18.

    Google Scholar 

  • Hale, G.E.: 1924, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105. DOI.

    Article  ADS  Google Scholar 

  • Han, Y.B., Yin, Z.Q.: 2019, A decline phase modeling for the prediction of solar cycle 25. Solar Phys. 294, 107. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7, 1. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104, 22375. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357. DOI.

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2016, North-south asymmetry in small and large sunspot group activity and violation of even-odd solar cycle rule. Astrophys. Space Sci. 361, 208. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A.: 2021, Forecasting peak smooth sunspot number of solar cycle 25: a method based on even-odd pair of solar cycle. Planet. Space Sci. 209, 105359. DOI.

    Article  Google Scholar 

  • Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. DOI.

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21 – 23. Periodicities, north-south asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067. DOI.

    Article  ADS  Google Scholar 

  • Lantos, P.: 2000, Prediction of the maximum amplitude of solar cycles using the ascending inflexion point. Solar Phys. 196, 221. DOI.

    Article  ADS  Google Scholar 

  • Maunder, E.W.: 1904, Note on the distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc. 64, 747. DOI.

    Article  ADS  Google Scholar 

  • Newton, H.W., Milsom, A.S.: 1955, Note on the observed differences in spottedness of the Sun’s northern and southern hemispheres. Mon. Not. Roy. Astron. Soc. 115, 398. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252, 209. DOI.

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2020, Solar cycle prediction. Living Rev. Solar Phys. 17, 2. DOI.

    Article  ADS  Google Scholar 

  • Podladchikova, T., Van der Linden, R., Veronig, A.M.: 2017, Sunspot number second differences as a precursor of the following 11-year sunspot cycle. Astrophys. J. 850, 81. DOI.

    Article  ADS  Google Scholar 

  • Ramesh, K.B., Lakshmi, N.B.: 2012, The amplitude of sunspot minimum as a favorable precursor for the prediction of the amplitude of the next solar maximum and the limit of the Waldmeier effect. Solar Phys. 276, 395. DOI.

    Article  ADS  Google Scholar 

  • Roy, S., Prasad, A., Ghosh, K., Panja, S.C., Patra, S.N.: 2020, Investigation of the hemispheric asymmetry in solar flare index during solar cycle 21 – 24 from the Kandilli Observatory. Solar Phys. 295, 100. DOI.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Schussler, M., Fligge, M.: 2002, Search for a relationship between solar cycle amplitude and length. Astron. Astrophys. 396, 1029. DOI.

    Article  ADS  Google Scholar 

  • Spoerer, F.W.G.: 1889, Von den Sonnenflecken des Jahres 1888 und von der Verschiedenheit der nördlichen und südlichen Halbkugel der Sonne seit 1883. Astron. Nachr. 121, 105. DOI.

    Article  ADS  Google Scholar 

  • Takalo, J.: 2020, Comparison of latitude distribution and evolution of even and odd sunspot cycles. Solar Phys. 295, 49. DOI.

    Article  ADS  Google Scholar 

  • Takalo, J., Mursula, K.: 2018, Principal component analysis of sunspot cycle shape. Astron. Astrophys. 620, A100. DOI.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A., Hanslmeier, A.: 2002, Hemispheric sunspot numbers Rn and Rs: catalogue and N–S asymmetry analysis. Astron. Astrophys. 390, 707. DOI.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A., Hanslmeier, A., Otruba, W., Messerotti, M.: 2001, Statistical analysis of solar H\(\alpha \) flares. Astron. Astrophys. 375, 1049. DOI.

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Mursula, K.: 2003, Long-term solar cycle evolution: review of recent developments. Solar Phys. 218, 319. DOI.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Jain, S., Podladchikova, T., Pötzi, W., Clette, F.: 2021, Hemispheric sunspot numbers 1874 – 2020. Astron. Astrophys. 652, A56. DOI.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1939, Über die Struktur der Sonnenflecken. Astron. Mitt. Zür. 14, 439. ADS.

    ADS  Google Scholar 

  • Waldmeier, M.: 1971, The asymmetry of solar activity in the years 1959 – 1969. Solar Phys. 20, 332. DOI.

    Article  ADS  Google Scholar 

  • Wilson, R.M.: 1993, A prediction for the onset of cycle 23. J. Geophys. Res. 98, 1333. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A.: 2014, Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann. Geophys. 32, 1035. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A., Yamagishi, H.: 2010, Predicting amplitude of solar cycle 24 based on a new precursor method. Ann. Geophys. 28, 417. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewer for valuable suggestions that greatly improved this manuscript.

Funding

This work was supported by National Key R&D Program of China under grant 2021YFA1600504 and the National Science Foundation of China (NSFC) under grants 11873060 and 11973058.

Author information

Authors and Affiliations

Authors

Contributions

The data analysis and the manuscript were completed by DZL.

Corresponding author

Correspondence to Zhanle Du.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z. Comparing the Correlations Between Solar Cycle Parameters in the Northern and Southern Hemispheres. Sol Phys 297, 70 (2022). https://doi.org/10.1007/s11207-022-02005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02005-5

Keywords

Navigation