Log in

Corotating Interaction Regions during Solar Cycle 24: A Study on Characteristics and Geoeffectiveness

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Corotating interaction regions (CIRs) form in the interaction region between the solar-wind high-speed streams and slow streams, leading to compressed plasma and magnetic fields. Using solar-wind measurements upstream of Earth, we identified 290 CIRs encountered by Earth during January 2008 through December 2019 (Solar Cycle 24). The occurrence rate is the maximum during the solar-cycle descending phase (\(\approx 33\) year−1), followed by occurrences during solar minimum (\(\approx 24\) year−1), the ascending phase (\(\approx 22\) year−1), and solar maximum (\(\approx 11\) year−1). At 1 AU, CIRs are found to be large-scale interplanetary structures with an average (median) duration of \(\approx 26\) hours (\(\approx 24\) hours) and radial extent of \(\approx 0.31\) AU (\(\approx 0.27\) AU). CIRs are characterized by average (median) plasma density of \(\approx 29\) cm−3 (\(\approx 26\) cm−3), ram pressure of \(\approx 11\) nPa (\(\approx 9\) nPa), temperature of \(\approx 5\times 10^{5}\) K (\(\approx 4\times 10^{5}\) K), and magnetic-field magnitude of \(\approx 15\) nT (\(\approx 14\) nT). The CIR characteristic features exhibit no clear solar-cycle phase dependence. About 30% of the CIRs are found to be geoeffective, causing geomagnetic storms with the peak SYM-H \(\leq -50\) nT; 25% caused moderate storms (−50 nT ≥ SYM-H \(>-100\) nT), and 5% caused intense storms (SYM-H \(\leq -100\) nT). The geoeffectiveness is found to decrease with the decreasing solar flux. CIRs during equinoxes are found to be more geoeffective compared to those during solstices. On average, SYM-H is strongly associated with the CIR plasma characteristic parameters (anti-correlation coefficient \(r=-0.65\) to −0.89), while the association is weaker for the AE-index (\(r=0.41\) to 0.67).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

The solar-wind plasma and interplanetary magnetic-field data are collected from OMNIWeb (omniweb.gsfc.nasa.gov/). The solar coronal AIA images are taken from NASA’s Solar Dynamics Observatory (sdo.gsfc.nasa.gov/). The geomagnetic SYM-H and AE indices are obtained from the World Data Center for Geomagnetism, Kyoto, Japan (wdc.kugi.kyoto-u.ac.jp/). The \(F_{10.7}\) solar flux are obtained from the LASP Interactive Solar Irradiance Data Center (lasp.colorado.edu/lisird/).

References

  • Allen, R.C., Lario, D., Odstrcil, D., Ho, G.C., Jian, L.K., Cohen, C.M.S., Badman, S.T., Jones, S.I., Arge, C.N., Mays, M.L., Mason, G.M., Bale, S.D., Bonnell, J.W., Case, A.W., Christian, E.R., Dudok de Wit, T., Goetz, K., Harvey, P.R., Henney, C.J., Hill, M.E., Kasper, J.C., Korreck, K.E., Larson, D., Livi, R., MacDowall, R.J., Malaspina, D.M., McComas, D.J., McNutt, R., Mitchell, D.G., Pulupa, M., Raouafi, N., Schwadron, N., Stevens, M.L., Whittlesey, P.L., Wiedenbeck, M.: 2020, Solar wind streams and stream interaction regions observed by the Parker Solar Probe with corresponding observations at 1 au. Astrophys. J. Suppl. 246, 36. DOI.

    Article  ADS  Google Scholar 

  • Allen, R.C., Ho, G.C., Mason, G.M., Li, G., Jian, L.K., Vines, S.K., Schwadron, N.A., Joyce, C.J., Bale, S.D., Bonnell, J.W., Case, A.W., Christian, E.R., Cohen, C.M.S., Desai, M.I., Filwett, R., Goetz, K., Harvey, P.R., Hill, M.E., Kasper, J.C., Korreck, K.E., Lario, D., Larson, D., Livi, R., MacDowall, R.J., Malaspina, D.M., McComas, D.J., McNutt, R., Mitchell, D.G., Paulson, K.W., Pulupa, M., Raouafi, N., Stevens, M.L., Whittlesey, P.L., Wiedenbeck, M.: 2021, Radial evolution of a CIR: observations from a nearly radially aligned event between Parker Solar Probe and STEREO-A. Geophys. Res. Lett. 48, e2020GL091376. DOI.

    Article  ADS  Google Scholar 

  • Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111, A07S05. DOI.

    Article  ADS  Google Scholar 

  • Baker, D.N., Kanekal, S.G., Pulkkinen, T.I., Blake, J.B.: 1999, Equinoctial and solstitial averages of magnetospheric relativistic electrons: a strong semiannual modulation. Geophys. Res. Lett. 26, 3193. DOI.

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L. Jr.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534. DOI.

    Article  ADS  Google Scholar 

  • Boller, B.R., Stolov, H.L.: 1970, Kelvin-Helmholtz instability and the semiannual variation of geomagnetic activity. J. Geophys. Res. 75, 6073. DOI.

    Article  ADS  Google Scholar 

  • Broun, J.A.: 1848, Observations in magnetism and meteorology made at Makerstoun in Scotland. Trans. Roy. Soc. Edinb. 18, 401.

    Google Scholar 

  • Burlaga, L.F., Behannon, K.W., Hansen, S.F., Pneuman, G.W., Feldman, W.C.: 1978, Sources of magnetic fields in recurrent interplanetary streams. J. Geophys. Res. 83, 4177. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Klein, L.W., Lep**, R.P., Behannon, K.W.: 1984, Large-scale interplanetary magnetic fields: Voyager 1 and 2 observations between 1 AU and 9.5 AU. J. Geophys. Res. 89, 10659. DOI.

    Article  ADS  Google Scholar 

  • Chi, Y., Shen, C., Luo, B., Wang, Y., Xu, M.: 2018, Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16, 1960. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kamide, Y., Ling, A.G.: 2000, Mountains versus valleys: semiannual variation of geomagnetic activity. J. Geophys. Res. 105, 2413. DOI.

    Article  ADS  Google Scholar 

  • Cortie, A.L.S.J.: 1912, Sun-spots and terrestrial magnetic phenomena, 1898 – 1911: the cause of the annual variation in magnetic disturbances. Mon. Not. Roy. Astron. Soc. 73, 52. DOI.

    Article  ADS  Google Scholar 

  • Daglis, I.A., Thorne, R.M., Baumjohann, W., Orsini, S.: 1999, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37, 407. DOI.

    Article  ADS  Google Scholar 

  • Danilov, A.A., Krymskii, G.F., Makarov, G.A.: 2013, Geomagnetic activity as a reflection of processes in the magnetospheric tail: 1. The source of diurnal and semiannual variations in geomagnetic activity. Geomagn. Aeron. 53, 469. DOI.

    Article  Google Scholar 

  • Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71, 785. DOI.

    Article  ADS  Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Tsurutani, B.T., Gonzalez, W.D., Kozyra, J.U.: 2011, High speed stream properties and related geomagnetic activity during the Whole Heliosphere Interval (WHI): 20 March to 16 April 2008. Solar Phys. 274, 303. DOI.

    Article  ADS  Google Scholar 

  • Frank, L.A.: 1967, On the extraterrestrial ring current during geomagnetic storms. J. Geophys. Res. 72, 3753. DOI.

    Article  ADS  Google Scholar 

  • Gardner, L., Sojka, J.J., Schunk, R.W., Heelis, R.: 2012, Changes in thermospheric temperature induced by high-speed solar wind streams. J. Geophys. Res. 117, A12303. DOI.

    Article  ADS  Google Scholar 

  • Gazis, P.R., McDonald, F.B., Burger, R.A., Chalov, S., Decker, R.B., Dwyer, J., Intriligator, D.S., Jokipii, J.R., Lazarus, A.J., Mason, G.M., Pizzo, V.J., Potgieter, M.S., Richardson, I.G., Lanzerotti, L.J.: 1999, Corotating interaction regions in the outer heliosphere. Space Sci. Rev. 89, 269. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Nunes, S., Yashiro, S., Howard, R.A.: 2004, Variability of solar eruptions during cycle 23. Adv. Space Res. 34, 391. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hundhausen, A.J., Bame, S.J.: 1976, Solar wind stream evolution at large heliocentric distances: experimental demonstration and the test of a model. J. Geophys. Res. 81, 2111. DOI.

    Article  ADS  Google Scholar 

  • Grandin, M., Aikio, A.T., Kozlovsky, A.: 2019, Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during Solar Cycles 23 and 24. J. Geophys. Res. 124, 3871. DOI.

    Article  Google Scholar 

  • Hajra, R.: 2021a, Variation of the interplanetary shocks in the inner heliosphere. Astrophys. J. 917, 91. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R.: 2021b, Seasonal dependence of the Earth’s radiation belt – new insights. Ann. Geophys. 39, 181. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R.: 2021c, Weakest solar cycle of the space age: a study on solar wind–magnetosphere energy coupling and geomagnetic activity. Solar Phys. 296, 33. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T.: 2018, Chapter 14 – Magnetospheric “killer” relativistic electron dropouts (REDs) and repopulation: a cyclical process. In: Buzulukova, N. (ed.) Extreme Events in Geospace, Elsevier, Amsterdam, 373. 978-0-12-812700-1. DOI.

    Chapter  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Lakhina, G.S.: 2020, The complex space weather events of 2017 September. Astrophys. J. 899, 3. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. 118, 5626. DOI.

    Article  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2014a, Relativistic electron acceleration during high-intensity, long-duration, continuous AE activity (HILDCAA) events: solar cycle phase dependences. Geophys. Res. Lett. 41, 1876. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Brum, C.G.M., Vieira, L.E.A., Santolik, O.: 2015b, Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important? Earth Planets Space 67, 109. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Santolik, O.: 2015a, Relativistic (E> 0.6, > 2.0, and > 4.0 MeV) electron acceleration at geosynchronous orbit during high-intensity, long-duration, continuous AE activity (HILDCAA) events. Astrophys. J. 799, 39. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Brum, C.G.M., Echer, E.: 2017, High-speed solar wind stream effects on the topside ionosphere over Arecibo: a case study during solar minimum. Geophys. Res. Lett. 44, 7607. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Henri, P., Myllys, M., Héritier, K.L., Galand, M., Simon Wedlund, C., Breuillard, H., Behar, E., Edberg, N.J.T., Goetz, C., Nilsson, H., Eriksson, A.I., Goldstein, R., Tsurutani, B.T., Moré, J., Vallières, X., Wattieaux, G.: 2018, Cometary plasma response to interplanetary corotating interaction regions during 2016 June–September: a quantitative study by the Rosetta Plasma Consortium. Mon. Not. Roy. Astron. Soc. 480, 4544. DOI.

    Article  ADS  Google Scholar 

  • Hamilton, D.C., Gloeckler, G., Ipavich, F.M., Stüdemann, W., Wilken, B., Kremser, G.: 1988, Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14343. DOI.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Gosling, J.T.: 1976, Solar wind structure at large heliocentric distances: an interpretation of Pioneer 10 observations. J. Geophys. Res. 81, 1436. DOI.

    Article  ADS  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91, 10951. DOI.

    Article  ADS  Google Scholar 

  • Iyemori, T., Takeda, M., Nose, M., Odagi, Y., Toh, H.: 2010, Mid-latitude Geomagnetic Indices ASY and SYM for 2009 (Provisional). wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf.

  • Jian, L.: 2008, PhD thesis, Univ. California Los Angeles.

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of stream interactions at one AU during 1995 – 2004. Solar Phys. 239, 337. DOI.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2008b, Evolution of solar wind structures from 0.72 to 1 AU. Adv. Space Res. 41, 259. DOI.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008a, Stream interactions and interplanetary coronal mass ejections at 0.72 AU. Solar Phys. 249, 85. DOI.

    Article  ADS  Google Scholar 

  • Jian, L.K., Russell, C.T., Luhmann, J.G., MacNeice, P.J., Odstrcil, D., Riley, P., Linker, J.A., Skoug, R.M., Steinberg, J.T.: 2011, Comparison of observations at ACE and Ulysses with Enlil model results: stream interaction regions during carrington rotations 2016 – 2018. Solar Phys. 273, 179. DOI.

    Article  ADS  Google Scholar 

  • Jian, L.K., Luhmann, J.G., Russell, C.T., Galvin, A.B.: 2019, Solar Terrestrial Relations Observatory (STEREO) observations of stream interaction regions in 2007 – 2016: relationship with heliospheric current sheets, solar cycle variations, and dual observations. Solar Phys. 294, 31. DOI.

    Article  ADS  Google Scholar 

  • Kanekal, S.G., Baker, D.N., McPherron, R.L.: 2010, On the seasonal dependence of relativistic electron fluxes. Ann. Geophys. 28, 1101. DOI.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI.

    Article  ADS  Google Scholar 

  • Lei, J., Thayer, J.P., Wang, W., McPherron, R.L.: 2011, Impact of CIR storms on thermosphere density variability during the solar minimum of 2008. Solar Phys. 274, 427. DOI.

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M.J., Barnard, L.A., Haines, C., Scott, C.J., McWilliams, K.A., Coxon, J.C.: 2020, Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J. Space Weather Space Clim. 10, 23. DOI.

    Article  ADS  Google Scholar 

  • Marques de Souza Franco, A., Hajra, R., Echer, E., Bolzan, M.J.A.: 2021, Seasonal features of geomagnetic activity: a study on the solar activity dependence. Ann. Geophys. 39, 929. DOI.

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Nozawa, S., Shinbori, A.: 2019, Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24. Earth Planets Space 71, 24. DOI.

    Article  ADS  Google Scholar 

  • Obridko, V.N., Ivanov, E.V., Özgüç, A., Kilcik, A., Yurchyshyn, V.B.: 2012, Coronal mass ejections and the index of effective solar multipole. Solar Phys. 281, 779. DOI.

    Article  ADS  Google Scholar 

  • Odstrčil, D., Pizzo, V.J.: 1999, Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt. J. Geophys. Res. 104, 483. DOI.

    Article  ADS  Google Scholar 

  • Palmerio, E., Kilpua, E.K.J., Möstl, C., Bothmer, V., James, A.W., Green, L.M., Isavnin, A., Davies, J.A., Harrison, R.A.: 2018, Coronal magnetic structure of earthbound CMEs and in situ comparison. Space Weather 16, 442. DOI.

    Article  ADS  Google Scholar 

  • Pizzo, V.: 1978, A three-dimensional model of corotating streams in the solar wind, 1. Theoretical foundations. J. Geophys. Res. 83, 5563. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2018, Solar wind stream interaction regions throughout the heliosphere. Liv. Rev. Solar Phys. 15, 1. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cliver, E.W., Cane, H.V.: 2000, Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res. 105, 18203. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., Kataoka, R., Steinberg, J.T., Thompson, B.J., Wu, C.-C., Zhukov, A.N.: 2006, Major geomagnetic storms (Dst \({\leq}-100\) nT) generated by corotating interaction regions. J. Geophys. Res. 111, A07S09. DOI.

    Article  ADS  Google Scholar 

  • Richter, A.K., Luttrell, A.H.: 1986, Superposed epoch analysis of corotating interaction regions at 0.3 and 1.0 AU: a comparative study. J. Geophys. Res. 91, 5873. DOI.

    Article  ADS  Google Scholar 

  • Russell, C.T., McPherron, R.L.: 1973, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92. DOI.

    Article  ADS  Google Scholar 

  • Sabine, E.: 1852, VIII. On periodical laws discoverable in the mean effects of the larger magnetic disturbance. No. II. Phil. Trans. Roy. Soc. London 142, 103. DOI.

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1844, Sonnen-Beobachtungen im Jahre 1843. Astron. Nachr. 21, 233.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Harvey, J.W.: 1981, Coronal holes, solar wind streams, and geomagnetic disturbances during 1978 and 1979. Solar Phys. 70, 237. DOI.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Asbridge, J.R., Bame, S.J., Harvey, J.W.: 1977, A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle. Solar Phys. 52, 485. DOI.

    Article  ADS  Google Scholar 

  • Shelley, E.G., Johnson, R.G., Sharp, R.D.: 1972, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104. DOI.

    Article  ADS  Google Scholar 

  • Siscoe, G..L.: 1972, Structure and orientations of solar-wind interaction fronts: Pioneer 6. J. Geophys. Res. 77, 27. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137. DOI.

    Article  ADS  Google Scholar 

  • Snyder, C.W., Neugebauer, M., Rao, U.R.: 1963, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 68, 6361. DOI.

    Article  ADS  Google Scholar 

  • Tanskanen, E.I., Pulkkinen, T.I., Viljanen, A., Mursula, K., Partamies, N., Slavin, J.A.: 2011, From space weather toward space climate time scales: substorm analysis from 1993 to 2008. J. Geophys. Res. 116, A00I34. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci. 35, 405. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Ho, C.M., Arballo, J.K., Goldstein, B.E., Balogh, A.: 1995, Large amplitude IMF fluctuations in corotating interaction regions: Ulysses at midlatitudes. Geophys. Res. Lett. 22, 3397. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01. DOI.

    Article  Google Scholar 

  • Tsurutani, B.T., Hajra, R., Echer, E., Gonzalez, W.D., Santolik, O.: 2016b, Predicting magnetospheric relativistic > 1 MeV electrons. NASA Tech Briefs 40, 20. www.techbriefs.com/component/content/article/ntb/tech-briefs/software/24815.

    Google Scholar 

  • Tsurutani, B.T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A.J., Lakhina, G.S., Kozyra, J.U., Shiokawa, K., Lee, L.C., Echer, E., Reddy, R.V., Gonzalez, W.D.: 2016a, Heliospheric plasma sheet (HPS) im**ement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms. J. Geophys. Res. 121, 10130. DOI.

    Article  Google Scholar 

  • Wang, H., Lühr, H.: 2007, Seasonal-longitudinal variation of substorm occurrence frequency: evidence for ionospheric control. Geophys. Res. Lett. 34, L07104. DOI.

    Article  ADS  Google Scholar 

  • Wanliss, J.A., Showalter, K.M.: 2006, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 111, A02202. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, R.A.: 1994, The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res. 99, 4201. DOI.

    Article  ADS  Google Scholar 

  • Williams, D.J.: 1987, Ring current and radiation belts. Rev. Geophys. 25, 570. DOI.

    Article  ADS  Google Scholar 

  • Yurchyshyn, V., Hu, Q., Lep**, R.P., Lynch, B.J., Krall, J.: 2007, Orientations of LASCO Halo CMEs and their connection to the flux rope structure of interplanetary CMEs. Adv. Space Res. 40, 1821. DOI.

    Article  ADS  Google Scholar 

  • Zhang, Y., Sun, W., Feng, X.S., Deehr, C.S., Fry, C.D., Dryer, M.: 2008, Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J. Geophys. Res. 113, A08106. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work of R. Hajra is funded by the Science and Engineering Research Board (SERB, grant no. SB/S2/RJN-080/2018), a statutory body of the Department of Science and Technology (DST), Government of India through the Ramanujan Fellowship. We would like to thank the reviewer for extremely valuable suggestions that substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Hajra.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(TXT 7 kB)

Appendix

Appendix

Table 3 presents a catalog of all CIRs identified from January 2008 through December 2019. The approximate start and end times are given as the day of the year. The table is available in the Electronic Supplementary Material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajra, R., Sunny, J.V. Corotating Interaction Regions during Solar Cycle 24: A Study on Characteristics and Geoeffectiveness. Sol Phys 297, 30 (2022). https://doi.org/10.1007/s11207-022-01962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01962-1

Keywords

Navigation