Log in

Catalytic epoxidation of fatty acid methyl esters by modified metalloporphyrins with variable metals and electron-donating substituents

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic efficiency of modified tetraphenylporphyrins with various metals (Mn, Fe, Co, Ni and Zn) and different electron-donating substituents (–OCH3, –OH, –N(CH3)2, –SO3Na) at the phenyl para-positions using hydrogen peroxide (H2O2, 30 wt%) as the oxidant has been researched in the epoxidation of unsaturated fatty acid methyl esters (FAMEs) under mild conditions. In the present system, the co-catalyst effect of inorganic salts had a crucial role in enhancing catalytic performance. According to the yields, the catalytic activities of metalloporphyrins were in the following order: Mn(TPP)Cl ≈ Fe(TPP)Cl > CoTPP > NiTPP > ZnTPP, and Mn(TPP)Cl > Mn(TMOPP)Cl ≈ Mn(THPP)Cl > Mn(TDMPP)Cl > Mn(TPPS4)Cl. Moreover, metalloporprhyrins after modification by electron-donating substituents displayed promoted thermolysis temperatures. Remarkably, the formation of intermediate porMnV=O has also been indicated, which was verified by both a kinetic study of FAMEs epoxidation and UV–Vis spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ortiz de Montellano PR (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev 110:932–948

    Article  CAS  Google Scholar 

  2. Perez MJ, Cederbaum AI (2002) Antioxidant and pro-oxidant effects of a manganese porphyrin complex against CYP2E1-dependent toxicity. Free Radical Bio Med 33:111–127

    Article  CAS  Google Scholar 

  3. Dolphin D, Traylor TG, **e LY (1997) Polyhaloporphyrins: unusual ligands for metals and metal-catalyzed oxidations. Accounts Chem Res 30:251–259

    Article  CAS  Google Scholar 

  4. Adler AD (1970) On the preparation of metalloporphyrins. J Inorg Nucl Chem 32:2443–2445

    Article  CAS  Google Scholar 

  5. Groves JT, Nemo TE (1983) Epoxidation reactions catalyzed by iron porphyrins. Oxygen transfer from iodosylbenzene. J Am Chem Soc 105:5786–5791

    Article  CAS  Google Scholar 

  6. Machado GS, Ucoski GM, Lima OJd, Ciuffi KJ, Wypych F, Nakagaki S (2013) Cationic and anionic metalloporphyrins simultaneously immobilized onto raw halloysite nanoscrolls catalyze oxidation reactions. Appl Catal A Gen 460–461:124–131

    Article  Google Scholar 

  7. Ucoski GM, Nunes FS, DeFreitas-Silva G, Idemori YM, Nakagaki S (2013) Metalloporphyrins immobilized on silica-coated Fe3O4 nanoparticles: magnetically recoverable catalysts for the oxidation of organic substrates. Appl Catal A Gen 459:121–130

    Article  CAS  Google Scholar 

  8. Wang Y, Jiang P, Zhang W, Zheng J (2013) 15-(4-Carboxyphenyl)-10,15,20-triphenylporphyrin manganese(III) chloride grafted on magnetic polyglycidyl methacrylate as biomimetic catalyst and their catalytic activity. Appl Surf Sci 270:531–538

    Article  CAS  Google Scholar 

  9. Balasubramanian PN, Sinha A, Bruice TC (1987) A kinetic study of the epoxidation of 2,3-dimethyl-2-butene by tert-butyl hydroperoxide catalyzed by imidazole ligated (meso-tetraphenylporphinato)manganese(III). J Am Chem Soc 109:1456–1462

    Article  CAS  Google Scholar 

  10. W-j Zhang, P-p Jiang, P-b Zhang, Liu P (2012) Immobilization of tetraphenylporphyrin manganese (III) chloride in HMS modified by Zr, Cu, and Zn oxides and their catalytic activity. Catal Lett 142:1512–1519

    Article  Google Scholar 

  11. Reginato G, Di Bari L, Salvadori P, Guilard R (2000) Chiral atropisomeric metalloporphyrins in the enantioselective styrene epoxidation. Eur J Org Chem 2000:1165–1171

    Article  Google Scholar 

  12. Morris GA, Nguyen ST, Hupp JT (2001) Enhanced activity of enantioselective (salen)Mn(III) epoxidation catalysts through supramolecular complexation. J Mol Catal A Chem 174:15–20

    Article  CAS  Google Scholar 

  13. Ellis S, Kozhevnikov IV (2002) Homogeneous oxidation of methyl isobutyrate with oxygen catalysed by metal complexes: polyoxometalates versus metalloporphyrins and metallophthalocyanines. J Mol Catal A Chem 187:227–235

    Article  CAS  Google Scholar 

  14. Guo C-C, Liu Q, Wang X-T, Hu H-Y (2005) Selective liquid phase oxidation of toluene with air. Appl Catal A Gen 282:55–59

    Article  CAS  Google Scholar 

  15. Ventrice P, Ventrice D, Russo E, De Sarro G (2013) Phthalates: european regulation, chemistry, pharmacokinetic and related toxicity. Environ Toxicol Phar 36:88–96

    Article  CAS  Google Scholar 

  16. Zhou J, Cai ZH, **ng KZ (2011) Potential mechanisms of phthalate ester embryotoxicity in the abalone Haliotis diversicolor supertexta. Environ Pollut 159:1114–1122

    Article  CAS  Google Scholar 

  17. Biermann U, Friedt W, Lang S, Luhs W, Machmuller G, Metzger JO, Klaas MR, Schafer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Edit 39:2206–2224

    Article  CAS  Google Scholar 

  18. Li Y, Zhuang M, Li T, Shi N (2009) Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. J Appl Toxicol 29:603–611

    Article  CAS  Google Scholar 

  19. Du G, Tekin A, Hammond EG, Wood LK (2004) Catalytic epoxidation of methyl linoleate. J Am Oil Chem Soc 81:477–480

    Article  CAS  Google Scholar 

  20. Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L (1967) A simplified synthesis for meso-tetraphenylporphine. J Org Chem 32:476

    Article  CAS  Google Scholar 

  21. Hansen CB, Hoogers GJ, Drenth W (1993) Anchored manganese and ruthenium porphyrins as catalysts in the decomposition of cyclohexyl hydroperoxide. J Mol Catal 79:153–163

    Article  CAS  Google Scholar 

  22. Guo C–C, Chu M-F, Liu Q, Liu Y, Guo D-C, Liu X-Q (2003) Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Appl Catal A Gen 246:303–309

    Article  CAS  Google Scholar 

  23. Wang MZ, Zhou CY, Wong MK, Che CM (2010) Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C–H bond and Lewis acid catalysis. Chem-Eur J 16:5723–5735

    Article  CAS  Google Scholar 

  24. Exner O (1988) Correlation analysis of chemical data. SNTL–Plenum Press, New York

    Google Scholar 

  25. Chen H, Li H, Lin J-M (2012) Determination of ammonia in water based on chemiluminescence resonance energy transfer between peroxymonocarbonate and branched NaYF4:yb3 +/Er3 + nanoparticles. Anal Chem 84:8871–8879

    Article  CAS  Google Scholar 

  26. Zhang L, Lu B, Lu C (2013) Chemiluminescence sensing of aminothiols in biological fluids using peroxymonocarbonate-prepared networked gold nanoparticles. Analyst 138:850–855

    Article  CAS  Google Scholar 

  27. Araghi M, Bokaei F (2013) Manganese(III) porphyrin supported on multi-wall carbon nanotubes: a highly efficient and reusable biomimetic catalyst for oxidative decarboxylation of α-arylcarboxylic acids and oxidation of alkanes with sodium periodate. Polyhedron 53:15–19

    Article  CAS  Google Scholar 

  28. Srour H, Jalkh J, Le Maux P, Chevance S, Kobeissi M, Simonneaux G (2013) Asymmetric oxidation of sulfides by hydrogen peroxide catalyzed by chiral manganese porphyrins in water/methanol solution. J Mol Catal A Chem 370:75–79

    Article  CAS  Google Scholar 

  29. Hajimohammadi M, Bahadoran F, Davarani SSH, Safari N (2010) Selective photocatalytic epoxidation of cyclooctene by molecular oxygen in the presence of porphyrin sensitizers. React Kinet Mech Cat 99:243–250

    CAS  Google Scholar 

  30. Madadi M, Rahimi R (2012) Zeolite-immobilized Mn(III), Fe(III) and Co(III) complexes with 5,10,15,20-tetra(4-methoxyphenyl)porphyrin as heterogeneous catalysts for the epoxidation of (R)-(+)-limonene: synthesis, characterization and catalytic activity. React Kinet Mech Cat 107:215–229

    Article  CAS  Google Scholar 

  31. Hamidipour L, Farzaneh F (2013) Cobalt metal organic framework as an efficient heterogeneous catalyst for the oxidation of alkanes and alkenes. React Kinet Mech Cat 109:67–75

    Article  CAS  Google Scholar 

  32. Gunter MJ, Turner P (1991) Metalloporphyrins as models for the cytochromes-P-450. Coordin Chem Rev 108:115–161

    Article  CAS  Google Scholar 

  33. Traylor TG (1991) Kinetics and mechanism studies in biomimetic chemistry–metalloenzyme model systems. Pure Appl Chem 63:265–274

    Article  CAS  Google Scholar 

  34. Cai S, Wang L (2011) Epoxidation of unsaturated fatty acid methyl esters in the presence of SO3H-functional brφnsted acidic ionic liquid as catalyst. Chinese J Chem Eng 19:57–63

    Article  CAS  Google Scholar 

  35. Saifuddin N, Zhan LW, Ning KX (2011) Heat-modeling of microwave assisted epoxidation of palm acid oil. Am J Applied Sci 8:217–229

    Article  CAS  Google Scholar 

  36. Merlau ML, Grande WJ, Nguyen ST, Hupp JT (2000) Enhanced activity of manganese(III) porphyrin epoxidation catalysts through supramolecular complexation. J Mol Catal A Chem 156:79–84

    Article  CAS  Google Scholar 

  37. Song WJ, Seo MS, George SD, Ohta T, Song R, Kang MJ, Tosha T, Kitagawa T, Solomon EI, Nam W (2007) Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes. J Am Chem Soc 129:1268–1277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National “Twelfth Five-Year” Plan for Science & Technology (2012BAD32B03), the National Natural Science Foundation of China (20903048) and the Innovation Foundation in Jiangsu Province of China (BY2013015-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **** Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2744 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Jiang, P., Wu, J. et al. Catalytic epoxidation of fatty acid methyl esters by modified metalloporphyrins with variable metals and electron-donating substituents. Reac Kinet Mech Cat 112, 147–158 (2014). https://doi.org/10.1007/s11144-014-0676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0676-4

Keywords

Navigation