Log in

Substrate-dependent order of catalytic activity for a series of Fe(III) and Mn(III) porphyrins in the oxidation of organic sulfides and olefins with periodate

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The oxidation of organic sulfides and olefins with tetra-n-butylammonium periodate (TBAP) in the presence of Fe(III) and Mn(III) meso-tetraarylporphyrins bearing phenyl, 2-chlorophenyl, 4-chlorophenyl and 4-methoxyphenyl groups at the meso positions and imidazole (ImH) has been studied and compared. With the exception of the metalloporphyrins with 4-methoxyphenyl substituents, the oxidative stability of the iron porphyrins was considerably greater than that of the manganese ones. The stronger π–π interaction between the porphyrin core and the iron center in comparison with the manganese center was suggested to explain the higher oxidative stability of the iron porphyrins. The metalloporphyrins with poor electron-donating substituents, i.e., 2-chlorophenyl and 4-chlorophenyl often provided much lower catalytic activity compared to the other catalysts. The departure of IO3 , leading to the formation of high valent oxo metal species, seems to be facilitated by the presence of strong electron-donating groups at the meso positions. In this catalytic system, the sulfoxide/sulfone molar ratio is determined by stereoelectronic properties of the substituents attached to the sulfur atom of the organic sulfide and the meso-aryl groups of the metalloporphyrins. Although the iron porphyrins showed significantly higher catalytic activities compared to the manganese counterparts in the oxidation of methyl phenyl sulfide, the catalytic activities were comparable for the oxidation of diallyl sulfide. On the other hand, the oxidation of olefins with TBAP gave different order of catalytic activities for the metalloporphyrins. However, the manganese porphyrins were generally more efficient catalysts compared to the iron one. Also, the iron or manganese porphyrins with more electron-donating meso substituents were found to be more efficient than the other ones. The competitive oxidation of cis- and trans-stilbene provided evidence for the participation of a high valent oxo metal species and a six-coordinate periodato one as the active oxidants, although in the case of MnT(2-Cl)PPOAc and FeT(2-Cl)PPOAc the results are strongly in favor of a high valent oxo metal species as the dominant active oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.E. Bäckvall, Selective Oxidation of Amines and Sulfides chapter in Modern Oxidation Methods, 2nd edn, ed. by J. E. Bäckvall, Chap. 8, pp. 277–313 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010)

  2. E.N. Prilezhaeva, Sulfones and sulfoxides in the total synthesis of biologically active natural compounds. Russ Chem Rev 69, 367 (2000)

    Article  CAS  Google Scholar 

  3. S. Patai, Z. Rappoport, Synthesis of sulfones, sulfoxides and cyclic sulfides (John Wiley, Chichester, 1994), pp. 109–254

    Google Scholar 

  4. N.S. Simpkins, Sulfones in organic synthesis (Pergamon Press, Oxford, 1993)

    Google Scholar 

  5. I. Fernandez, N. Khiar, Recent developments in the synthesis and utilization of chiral sulfoxides. Chem Rev 103, 3651 (2003)

    Article  CAS  Google Scholar 

  6. A.M. Khenkin, R. Neumann, Oxygen Transfer from sulfoxides:  oxidation of alkylarenes catalyzed by a polyoxomolybdate, [PMo12O40]3−. J Am Chem. Soc. 124, 4198 (2002)

    Article  CAS  Google Scholar 

  7. B. Meunier, Metalloporphyrins as versatile catalysts for oxidation reaction and oxidative dna cleavage. Chem Rev 92, 1411 (1992)

    Article  CAS  Google Scholar 

  8. T.I. Reddy, R.S. Varma, Ti-beta-catalysed selective oxidation of sulfides to sulfoxides using urea–hydrogen peroxide adduct. Chem Commun 5, 471 (1997)

    Article  Google Scholar 

  9. M.H. Ali, G.J.A. Bohnert, Facile and selective procedure for oxidation of sulfides to sulfoxides with molecular bromine on hydrated silica gel in dichloromethane. Synthesis 9, 1238 (1998)

    Article  Google Scholar 

  10. W. Nam, S.Y. Oh, Y.J. Sun, J. Kim, W.K. Kim, S.K. Woo, W. Shin, Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. J. Org. Chem. 68, 7903 (2003)

    Article  CAS  Google Scholar 

  11. D. Mohajer, M. Abbasi, Solvent effects on catalytic epoxidation of alkenes by Tetra-n-butylammonium periodate and (Tetraarylporphyrinato) manganese(III). Eur. J. Inorg. Chem 20, 3218 (2008)

    Article  Google Scholar 

  12. S. Zakavi, A. Abasi, A. Pourali, S. Talebzadeh, Metalloporphyrin-catalyzed chemoselective oxidation of sulfides with polyvinylpyrrolidone-supported hydrogen peroxide: a simple catalytic system for selective oxidation of sulfides to sulfoxides. Bull. Korean Chem. Soc. 33, 35 (2012)

    Article  CAS  Google Scholar 

  13. C. Abebrese, Y. Huang, A. Pan, Z. Yuan, R. Zhang, Kinetic studies of oxygen atom transfer reactions from trans-dioxoruthenium(VI) porphyrins to sulfides. J. Inorg. Biochem. 105, 1555 (2011)

    Article  CAS  Google Scholar 

  14. S. Campestrini, U. Tonellato, Manganeseporphyrin-catalysed heterogeneous and unusually chemioselective oxidations of sulfides by monopersulfate in supercritical CO2. J. Mol. Catalysis A: Chem 164, 263 (2000)

    Article  CAS  Google Scholar 

  15. V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammdpoor-Baltork, H. Kargar, M. Araghi, Highly efficient oxidation of sulfides with sodium periodate catalyzed by reusable silica supported Mn(Br8TPP)Cl and Mn(TPP)Cl catalysts under various reaction conditions. Appl. Catal. A 353, 61 (2009)

    Article  CAS  Google Scholar 

  16. A. Ghaemi, S. Rayati, S. Zakavi, N. Safari, Highly efficient oxidation of sulfides to sulfones with tetra-n-butylammonium hydrogen monopersulfate catalyzed by β-tri- and tetra-brominated meso-tetraphenylporphyrinatomanganese(III) acetate. Appl. Catal. A 353, 154 (2009)

    Article  CAS  Google Scholar 

  17. E. Sansiaume, R. Ricoux, D. Gori, J.-P. Mahy, Oxidation of organic molecules in homogeneous aqueous solution catalyzed by hybrid biocatalysts (based on the Trojan Horse strategy). Tetrahedron Asymmetry 21, 1593 (2010)

    Article  CAS  Google Scholar 

  18. A. Rezaeifard, M. Jafarpour, H. Raissi, E. Ghiamati, A. Tootoonchi, Factors affecting the reactivity and selectivity in the oxidation of sulfides with tetra-n-butylammonium peroxomonosulfate catalyzed by Mn(III) porphyrins: significant nitrogen donor effects. Polyhedron 30, 592 (2011)

    Article  CAS  Google Scholar 

  19. S. Rayati, S. Zakavi, E. Bohloulbandi, M. Jafarian, M. Rashvand avei, Comparative study of the catalytic activity of a series of β-brominated Mn–porphyrins in the oxidation of olefins and organic sulfides: Better catalytic performance of the partially brominated ones. Polyhedron 34, 102 (2012)

    Article  CAS  Google Scholar 

  20. S.M.G. Pires, M.M.Q. Simõesa, I.C.M.S. Santos, S.L.H. Rebelo, M.M. Pereira, M.G.P.M.S. Nevesa, J.A.S. Cavaleiro, Biomimetic oxidation of organosulfur compounds with hydrogen peroxide catalyzed by manganese porphyrins. Appl. Catal. A 439–440, 51 (2012)

    Article  Google Scholar 

  21. D. Mohajer, S. Tangestaninejad, Efficient catalytic epoxidation of alkenes by a manganese porphyrin and periodate in the presence of imidazole. J. Chem. Soc., Chem. Commun. 3, 240 (1993)

    Article  Google Scholar 

  22. D. Mohajer, S. Tangestaninejad, Efficient olefin epoxidation with tetrabutylammonium periodate catalyzed by manganese porphyrin in the presence of imidazole. Tetrahedron Lett. 35, 945 (1994)

    Article  CAS  Google Scholar 

  23. D. Mohajer, R. Tayebee, H. Goudarziafshar, Sodium periodate epoxidation of alkenes catalysed by manganese porphyrins. J. Chem. Research (S) 2, 168 (1999)

    Article  Google Scholar 

  24. D. Mohajer, G. Karimipour, M. Bagherzadeh, Reactivity studies of biomimetic catalytic epoxidation of alkenes with tetrabutylammonium periodate in the presence of various manganese porphyrins and nitrogen donors: significant axial ligand π-bonding effects. New J. Chem. 28, 740 (2004)

    Article  CAS  Google Scholar 

  25. S. Zakavi, F. Heidarizadi, S. Rayati, Comparative study of catalytic activity of some biomimetic models of cytochrome P450 in oxidation of olefins with tetra-n-butylammonium periodate: electron-rich Mn-porphyrins versus the electron-deficient ones. Inorg. Chem. Commun. 14, 1010 (2011)

    Article  CAS  Google Scholar 

  26. S. Zakavi, L. Ebrahimi, Substitution effects on the catalytic activity of Mn(III) porphyrins in epoxidation of alkenes with iodosylbenzene: A comparison between the electron-rich and electron-deficient porphyrins. Polyhedron 30, 1732 (2011)

    Article  CAS  Google Scholar 

  27. S. Zakavi, A.G. Mojarrad, S. Rayati, Substituent effects on the catalytic activity of a series of manganese meso-tetra(aryl)porphyrins: (2-, 3-, 4)-Pyridyl, 4-sulfonatophenyl and 3-sulfonato-4-methoxyphenyl groups compared to phenyl and 4-methoxyphenyl ones. J. Mol. Catal. A: Chem. 363–364, 153 (2012)

    Article  Google Scholar 

  28. S. Zakavi, T. Mokary yazdeli, Steroelectronic effects of the meso-substituents on the catalytic performance of iron(III) meso-tetraarylporphyrins: pyridyl and N-methylatedpyridyl groups compared to phenyl, 4-methoxyphenyl and 4-sulfonatophenyl ones. J. Mol. Catal. A: Chem 367, 108 (2013)

    Article  CAS  Google Scholar 

  29. A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, A Simplified synthesis for msso-tetraphenylporphin. J. Org. Chem. 32, 476 (1967)

    Article  CAS  Google Scholar 

  30. R.W.A. Johnstone, M.L.P.G. Nanes, M.M. Pereira, R.W.A. Johnstone, A.M.de.A.R. Gonsalves, A.C. Serra, Improved synthesis of 5,10,15,20-tetrakisaryl- and tetrakis-alkylporphyrins. Heterocycles 43, 1425 (1996)

    Article  Google Scholar 

  31. A.D. Adler, F.R. Longo, F. Kampas, J. Kim, On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 32, 2443 (1970)

    Article  CAS  Google Scholar 

  32. H. Kobayashi, T. Higuchi, Y. Kaizu, H. Osada, M. Aoki, Electronic spectra of tetraphenylporphyrinatoiron(iii) methoxide. Bull. Chem. Soc. Jpn. 48, 3137 (1975)

    Article  CAS  Google Scholar 

  33. J.T. Groves, T.E. Nemo, Aliphatic hydroxylation catalyzed by iron porphyrin complexes. J. Am. Chem. Soc. 105, 6243 (1983)

    Article  CAS  Google Scholar 

  34. R.J. Abraham, G.E. Hawkes, M.F. Hudson, K.M. Smith, The nuclear magnetic resonance spectra of porphyrins. Part X. I carbon-13 nuclear magnetic resonance spectra of some meso-tetraarylporphyrins and their metal chelates. J. Chem. Soc. Perkin Trans. 2, 204 (1975)

    Article  Google Scholar 

  35. R.A. Sheldon, J.K. Kochi, Metal-catalyzed oxidation of organic compounds (Academic Press, New York, 1981), pp. 8–57

    Google Scholar 

  36. I.D. Cunningham, T.N. Danks, J.N. Hay, I. Hamerton, S. Gunathilagan, C. Janczak, Stability of various metalloporphyrin catalysts during hydrogen peroxide epoxidation of alkene. J. Mol. Catal. A: Chem. 185, 25 (2002)

    Article  CAS  Google Scholar 

  37. R. Koerner, M.M. Olmstead, A. Ozarowski, S.L. Phillips, P.M. Van Calcar, K. Winkler, A.L. Balch, Possible intermediates in biological metalloporphyrin oxidative degradation. Nickel, copper, and cobalt complexes of octaethylformybiliverdin and their conversion to a verdoheme. J. Am. Chem. Soc. 120, 1274 (1998)

    Article  CAS  Google Scholar 

  38. M. Gouterman, Spectra of porphyrins. J. Mol. Spectrosc. 6, 138 (1961)

    Article  CAS  Google Scholar 

  39. S. Zakavi, R. Omidyan, S. Talebzadeh, Porphine core saddling: effects on the HOMO/LUMO gap and the macrocycle bond lengths and bond angles. Polyhedron 49, 36 (2013)

    Article  CAS  Google Scholar 

  40. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic chemistry: principles of structure and reactivity, 4th edn. (HarperCollins College Publishers, New York, 1993), pp. 187–188

    Google Scholar 

  41. C. Elschenbroich, Organometallics, 3rd ed., translated by J. Oliveira and C. Elschenbroich. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006) p. 280

  42. B. Figgis, M.A. Hitchman, Ligand field theory and its applications (Wiley-VCH, New York, 2000), pp. 56–57

    Google Scholar 

  43. S. Zakavi, R. Omidyan, L. Ebrahimi, F. Heidarizadi, Substitution effects on the UV–vis and 1H NMR spectra of the dications of meso and/or β substituted porphyrins with trifluoroacetic acid: electron-deficient porphyrins compared to the electron-rich ones. Inorg. Chem. Commun. 14, 1827 (2011)

    Article  CAS  Google Scholar 

  44. P.S. Traylor, D. Dolphin, T.G. Traylor, Sterically protected hemins with electronegative substituents: efficient catalysts for hydroxylation and epoxidation. J. Chem. Soc. Chem. Commun 5, 279 (1984)

    Article  Google Scholar 

  45. A.C. Serra, E.C. Marçalo, M.A.d’A. Rocha Gonsalves, A view on the mechanism of metalloporphyrin degradation in hydrogen peroxide epoxidation reactions. J. Mol. Catal. A: Chem 215, 17 (2004)

    Article  CAS  Google Scholar 

  46. R.D. Arasasingham, G.X. He, T.C. Bruice, Mechanism of manganese porphyrin-catalyzed oxidation of alkenes. Role of manganese(IV)-oxo species. J. Am. Chem. Soc. 115, 7985 (1993)

    Article  CAS  Google Scholar 

  47. W. Nam, M.H. Lim, H.J. Lee, C. Kim, Evidence for the participation of two distinct reactive intermediates in iron(iii) porphyrin complex-catalyzed epoxidation reactions. J. Am. Chem. Soc. 122, 6641 (2000)

    Article  CAS  Google Scholar 

  48. W. Nam, S.W. **, M.H. Lim, J.Y. Ryu, C. Kim, Anionic ligand effect on the nature of epoxidizing intermediates in iron porphyrin complex-catalyzed epoxidation reactions. Inorg. Chem. 41, 3647 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the Institute for Advanced Studies in Basic Sciences (IASBS) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zakavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2014_549_MOESM1_ESM.docx

Supplementary material 1 (DOCX 32 kb) Tables S1-S8 and Table S9 show the results of the oxidation of different olefins and the oxidative degradation of the metalloporphyrins, respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakavi, S., Kayhomayoon, Z. & Rayati, S. Substrate-dependent order of catalytic activity for a series of Fe(III) and Mn(III) porphyrins in the oxidation of organic sulfides and olefins with periodate. J IRAN CHEM SOC 12, 863–872 (2015). https://doi.org/10.1007/s13738-014-0549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0549-9

Keywords

Navigation