Log in

Analytic approach to the non-pre-emptive Markovian priority queue

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A new approach is developed for the joint queue-length distribution of the two-level non-pre-emptive M/M/c (i.e. Markovian) priority queue that allows explicit and exact results to be obtained. Marginal distributions are derived for the general multi-level problem. The results are based on a representation of the joint queue-length probability mass function as a single-variable complex contour integral, which reduces to a real integral on a finite interval arising from a cut on the real axis. Both numerical quadrature rules and exact finite sums, involving Legendre polynomials and their generalization, are presented for the joint and marginal distributions. A high level of accuracy is demonstrated across the entire ergodic region. Relationships are established with the waiting-time distributions. Asymptotic behaviour in the large queue-length regime is extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Consistent with [18, 19], the notation \(\rho _k\) reserved for \(\rho _k \equiv \lambda _k/\mu \), so that \(r_k = \rho _k/c\).

  2. The symbol r is reserved for the two-level problem. For the two-level problem (\(K = 2\)), \(r_{\text {agg}} = r\).

  3. All computation is performed in Matlab R2020a, which implements IEEE Standard 754 for double precision.

References

  1. Cohen, J.W.: Certain delay problems for a full availability trunk group loaded by two traffic sources. Philips Telecommun. Rev. 16(3), 105–113 (1956)

    Google Scholar 

  2. Almehdawe, E., Jewkes, B., He, Q.-M.: A Markovian queueing model for ambulance offload delays. Eur. J. Oper. Res. 226(3), 602–614 (2013)

    Article  Google Scholar 

  3. Hou, J., Zhao, X.: Using a priority queueing approach to improve emergency department performance. J. Manag. Anal. 7(1), 28–43 (2020)

    Google Scholar 

  4. Taylor, I.D.S., Templeton, J.G.C.: Waiting time in a multi-server cutoff-priority queue, and its application to an urban ambulance service. Oper. Res. 28(5), 1168–1188 (1980)

    Article  Google Scholar 

  5. Orman, A.J.: Models for scheduling a multifunction phased array radar system. Ph.D. thesis, University of Southampton, Southampton, UK (1995)

  6. Orman, A.J., Potts, C.N., Shahani, A.K., Moore, A.R.: Scheduling for a multifunction phased array radar system. Eur. J. Oper. Res. 90(1), 13–25 (1996)

    Article  Google Scholar 

  7. Pestalozzi, G.: Priority rules for runway use. Oper. Res. 12(6), 941–950 (1964)

    Article  Google Scholar 

  8. Zuk, J., Kirszenblat, D.: Explicit results for the distributions of queue lengths for a non-preemptive two-level priority queue. Submitted to Ann. Oper. Res. (2023). https://doi.org/10.2139/ssrn.4574550

  9. Sleptchenko, A.: Multi-class, multi-server, queues with non-preemptive priorities. Report Eurandom Vol. 2003016, EURANDOM, Eindhoven University of Technology, The Netherlands (2003). https://pure.tue.nl/ws/portalfiles/portal/3290904/567759.pdf

  10. Li, H., Zhao, Y.Q.: Exact tail asymptotics in a priority queue—characterizations of the non-preemptive model. Queueing Syst. 68(2), 165–192 (2011)

    Article  Google Scholar 

  11. Zuk, J., Kirszenblat, D.: Joint queue-length distribution for the non-preemptive multi-server multi-level markovian priority queue. Submitted to 4OR (2023). https://doi.org/10.2139/ssrn.4621771

  12. Karlin, S., McGregor, J.L.: Many server queueing processes with Poisson input and exponential service times. Pac. J. Math. 8(1), 87–118 (1958)

    Article  Google Scholar 

  13. Zuk, J., Kirszenblat, D.: Exact results for the distribution of the partial busy period for a multi-server queue. Queueing Syst. (2024). https://doi.org/10.2139/ssrn.4569933

  14. Davis, R.H.: Waiting time distribution of a multi-server, priority queuing system. Oper. Res. 14(1), 133–136 (1966)

    Article  Google Scholar 

  15. Bertsimas, D., Mourtzinou, G.: Multiclass queueing systems in heavy traffic: An asymptotic approach based on distributional and conservation laws. Oper. Res. 45(3), 470–487 (1997)

    Article  Google Scholar 

  16. Zuk, J., Kirszenblat, D.: A queueing model for the ambulance ram** problem with an offload zone. Submitted to Eur. J. Oper. Res. (2024). https://doi.org/10.2139/ssrn.4692322

  17. Shortle, J.F., Thompson, J.M., Gross, D., Harris, C.M.: Fundamentals of Queueing Theory, 5th edn. Wiley, Hoboken (2018)

    Book  Google Scholar 

  18. Gail, H.R., Hantler, S.L., Taylor, B.A.: Analysis of non-preemptive priority multi-server queue. Adv. Appl. Probab. 20(4), 852–879 (1988)

    Article  Google Scholar 

  19. Kao, E.P.C., Narayanan, K.S.: Computing steady state probabilities of a non-preemptive priority queue. INFORMS J. Comput. 2(3), 211–218 (1990)

    Article  Google Scholar 

  20. Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory, 2nd edn. Birkhäuser, Boston (1989)

    Book  Google Scholar 

  21. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  22. Picard, E.: Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques. Annales Scientifiques de l’École Normale Supérieure, Serie 2(10), 305–322 (1881)

    Article  Google Scholar 

  23. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Burlington (2007)

    Google Scholar 

  24. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation, 1st edn. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  25. Gautschi, W.: Orthogonal polynomials (in Matlab). J. Comput. Appl. Math. 178(1), 425–434 (2005)

    Google Scholar 

  26. Chawla, M.M.: Estimation of errors of Gauss–Chebyshev quadratures. Comput. J. 13(1), 107–109 (1970)

    Article  Google Scholar 

  27. Rice, S.O.: Distribution of quadratic forms in normal random variables—evaluation by numerical integration. SIAM J. Sci. Stat. Comput. 1(4), 438–448 (1980)

    Article  Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  29. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014)

    Article  Google Scholar 

  30. Bertsimas, D., Nakazato, D.: The distributional Little’s law and its applications. Oper. Res. 43(2), 298–310 (1995)

    Article  Google Scholar 

  31. Keilson, J., Servi, L.D.: A distributional form of Little’s law. Oper. Res. Lett. 7(5), 223–227 (1988)

    Article  Google Scholar 

  32. Erdélyi, A.: Some confluent hypergeometric functions of two variables. Proc. R. Soc. Edinb. 60(3), 344–361 (1940)

    Article  Google Scholar 

  33. Gautschi, W.: Gauss quadrature approximations to hypergeometric functions and confluent hypergeometric functions. J. Comput. Appl. Math. 139(1), 173–187 (2002)

    Article  Google Scholar 

  34. Abate, J., Whitt, W.: Asymptotics for M/G/\(1\) low-priority waiting-time tail probabilities. Queueing Syst. 25, 173–233 (1997)

    Article  Google Scholar 

  35. Kella, O., Yechiali, U.: Waiting times in the non-preemptive priority M/M/\(c\) queue. Commun. Stat. Stochast. Models 1(2), 257–262 (1985)

    Article  Google Scholar 

  36. Holley, J.L.: Waiting line subject to priorities. Oper. Res. 2(3), 341–343 (1954)

    Google Scholar 

  37. Li, Y.T., Wong, R.: Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7(2), 229–247 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge useful discussions with Dr. Stephen Bocquet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Zuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Joint asymptotics

To determine the large-\(\ell \) behaviour of the joint integral (89), we use the symmetry properties and periodicity of the integrand to write it as an integral over the interval \(\theta \in [0,2\pi )\). We then promote the integration variable \(\theta \) to the complex plane and deform the contour from \(\theta = 0\) to \(\theta = 2\pi \) into three straight legs: (i) from 0 to \(0 + i\infty \), (ii) from \(0 + i\infty \) to \(2\pi + i\infty \), and (iii) from \(2\pi + i\infty \) to \(2\pi \), making small excursions on the vertical legs around the points \(\theta = \, \textrm{acos}(\alpha ), \, \textrm{acos}(\beta )\). The contribution from the horizontal contour vanishes, while the vertical contours cancel apart from the excursions around the singular points. As a result, we obtain the decomposition \(J_{\text {scl}}(\ell ,m) = J_{\text {scl}}^\alpha (\ell ,m) + J_{\text {scl}}^\beta (\ell ,m)\) where, on writing \(\theta = it\), we have

$$\begin{aligned} J_{\text {scl}}^{\alpha ,\beta }(\ell ,m) = (\beta -\alpha )^{m+1}\oint _{C_{\alpha ,\beta }} \frac{dt}{2\pi i}\, \frac{\sinh (t)e^{-\ell t}}{(\cosh (t)-\alpha )^{m+1}(\cosh (t) - \beta )} , \end{aligned}$$
(A1)

where \(C_\alpha \) is an infinitesimal anti-clockwise circle about the point \(t = {{\,\textrm{acosh}\,}}(\alpha )\), and likewise for \(C_\beta \) about the point \(t = {{\,\textrm{acosh}\,}}(\beta )\).

It is clear that \(J_{\text {scl}}^\beta (\ell ,m) = d_{\ell +1}(\beta )\). To evaluate \(J_{\text {scl}}^\alpha (\ell ,m)\), we set \(\alpha \equiv \cosh (s)\) so that

$$\begin{aligned} \begin{aligned} J_{\text {scl}}^\alpha (\ell {-}1,m)&= \left( \frac{\beta -\alpha }{2}\right) ^{m+1}\!\!e^{-\ell s}\oint _{C_\alpha } \frac{dt}{2\pi i}\, \frac{e^{-\ell (t-s)}}{\sinh ^{m+1}((t-s)/2)} \\&\quad {}\times \frac{\sinh (t)}{\sinh ^{m+1}((t+s)/2)[\cosh (t)-\beta ]} \\&= \left( \frac{\beta -\alpha }{2}\right) ^{m+1}\frac{e^{-\ell s}}{\ell }\oint _{C_0} \frac{dt}{2\pi i}\,\frac{e^{-t}}{\sinh ^{m+1}(t/(2\ell ))} \\&\quad {}\times \frac{\sinh (s+t/\ell )}{\sinh ^{m+1}(s+t/(2\ell ))[\cosh (s+t/\ell )-\beta ]} \;. \end{aligned} \end{aligned}$$
(A2)

Taking the limit yields

$$\begin{aligned} J_{\text {scl}}^\alpha (\ell {-}1,m) \mathrel {\mathop {\sim }_{\ell \rightarrow \infty }} \frac{(\beta -\alpha )^{m+1}\ell ^me^{-\ell s}}{\sinh ^m(s)[\cosh (s)-\beta ]} \oint _{C_0}\frac{dt}{2\pi i}\, \frac{e^{-t}}{t^{m+1}} = -\frac{\ell ^m}{m!}\left( \frac{\alpha -\beta }{\sqrt{\alpha ^2-1}}\right) ^m d_\ell (\alpha ) ,\nonumber \\ \end{aligned}$$
(A3)

where \(\mathcal {C}_0\) is an infinitesimal anti-clockwise circle about the origin. The result (123) in the main text follows. To see how to use it in determining the asymptotics of the joint PMF, let us make the decomposition \(P_{\text {cut}}(\ell ,m) = P^{\alpha }(\ell ,m) + P^{\beta }(\ell ,m)\), where \(P^{\alpha }(\ell ,m)\) denotes the component of the cut contribution to the joint PMF that arises solely from \(J_{\text {scl}}^{\alpha }(\ell ,m)\), and where \(P^{\beta }(\ell ,m)\) arises solely from \(J_{\text {scl}}^{\beta }(\ell ,m)\). One can show that the \(\beta \)-component exactly cancels the pole term, \(P^{\beta }(\ell ,m) = -P_{\text {pol}} (\ell ,m)\), which leads to the representation

$$\begin{aligned} \begin{aligned} P(\ell ,m)&= P_{\text {pol}}(\ell ,m) + P_{\text {cut}}(\ell ,m) \\&= P^{\alpha }(\ell ,m) \\&= (1-r)r^{m-1} r_{\text {hi}}^{\ell /2}\left[ \sqrt{r_{\text {hi}}}{\cdot }J_{\text {scl}}^{\alpha }(\ell ,m-1) - r{\cdot }J_{\text {scl}}^{\alpha }(\ell -1,m)\right] \;. \end{aligned} \end{aligned}$$
(A4)

It is straightforward to evaluate \(J_{\text {scl}}^\alpha (\ell ,m)\) for \(m = 0\) and confirm that the expected result for \(P_{\text {xhi}}(\ell ) = P(\ell ,0)\) is recovered. We obtain \(P_{\text {xhi}}(\ell ) = (1-r)r_{\text {hi}}^{\ell /2}{\cdot }d_\ell (\alpha )\) which, given (49) and (109), reproduces the form cited above (120). A by-product of this discussion is an alternative representation of the joint integral, given by

$$\begin{aligned} J_{\text {scl}}(\ell ,m) = d_{\ell +1}(\beta ) + \oint _{C_{\alpha }}\frac{dw}{2\pi i}\, \frac{d_{\ell +1}(w)}{w-\beta }\left( \frac{\beta -\alpha }{w-\alpha }\right) ^{m+1} . \end{aligned}$$
(A5)

The large-m asymptotics for fixed \(\ell \) follow directly from (81) as

$$\begin{aligned} P_{\text {cut}}(\ell ,m) \mathrel {\mathop {\sim }_{m\rightarrow \infty }} \left[ \mathscr {C}_2^{\ell ,m}{\cdot }a(\ell +1) - \mathscr {C}_1^{\ell ,m}{\cdot }\ell \right] {\cdot }\frac{1}{\pi } \int _0^1 du\, \frac{\sqrt{u}}{(u+a)^{m+1}(u+b)} ,\nonumber \\ \end{aligned}$$
(A6)

where the asymptotics of the integral follow from (64) and (68) for non-vanishing and vanishing values of b, respectively. The results obtained here are consistent with those presented in [10], when specialized to the case of a common service rate.

Appendix B Laguerre series for the waiting time

Let us write \(p_n \equiv P_\mathscr {L}(n)\) so that

$$\begin{aligned} p_n = \frac{1}{n!}{\cdot }\left. \frac{d^n}{dp^n} g_{\text {lo}}(z)\right| _{z=0} = \oint _{\mathcal {C}}\frac{dz}{2\pi i}\, \frac{g_{\text {lo}}(z)}{z^{n+1}} , \end{aligned}$$
(B7)

where the closed anti-clockwise traversed integration contour \(\mathcal {C}\), initially taken to be a circle centred on the origin of radius \(0< \eta < 1/r\), is deformed into the Bromwich contour \(\Gamma \) on which \(z = \delta +iy\) with \(-\infty< y < +\infty \), for some \(1< \delta < 1/r\) so that \(\mathop {\textrm{Re}} \nolimits z > 1\). Then, we consider the Binomial transform of the \(p_n\) sequence

$$\begin{aligned} \begin{aligned} \gamma _n&\equiv \sum _{k=0}^n \left( {\begin{array}{c}n\\ k\end{array}}\right) (-1)^k p_k \\&= \int _\Gamma \frac{dz}{2\pi i}\, g_{\text {lo}}(z)\sum _{k=0}^n \left( {\begin{array}{c}n\\ k\end{array}}\right) (-1)^k \frac{1}{z^{k+1}} \\&= \int _\Gamma \frac{dz}{2\pi i}\, \frac{g_{\text {lo}}(z)}{z}{\cdot } (1-1/z)^n \;. \end{aligned} \end{aligned}$$
(B8)

We now recall the generating function for the Laguerre polynomials \(L_n(x)\), given by

$$\begin{aligned} \sum _{n=0}^\infty \tau ^n L_n(x) = \frac{1}{1-\tau }e^{-\tau x/(1-\tau )} . \end{aligned}$$
(B9)

On setting \(\tau = 1 - 1/z\) and \(x = r_{\text {lo}}t\), this reads

$$\begin{aligned} \sum _{n=0}^\infty \left( 1 - 1/z\right) ^nL_n(r_{\text {lo}}t) = z e^{-r_{\text {lo}}t(z-1)} , \end{aligned}$$
(B10)

from which it follows that

$$\begin{aligned} \sum _{n=0}^\infty \gamma _n L_n(r_{\text {lo}}t) = \int _\Gamma \frac{dz}{2\pi i}\, g_{\text {lo}}(z) e^{-r_{\text {lo}}t(z-1)} . \end{aligned}$$
(B11)

Now, (125) can be written as

$$\begin{aligned} P_\mathscr {L}(k) = \int _0^\infty dt'\, P'_\mathscr {W}(t') \frac{t^{\prime k}}{k!}e^{-t'} , \end{aligned}$$
(B12)

where \(t' = r_{\text {lo}}t\) and \(P'_\mathscr {W}(t')dt' = P_\mathscr {W}(t)dt\). We also have

$$\begin{aligned} L_n(t) = \sum _{k=0}^n \left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{(-1)^k}{k!} t^k . \end{aligned}$$
(B13)

These may be combined to yield

$$\begin{aligned} \int _0^\infty dt'\, e^{-t'}L_n(t') P'_\mathscr {W}(t') = \sum _{k=0}^n \left( {\begin{array}{c}n\\ k\end{array}}\right) (-1)^k \int _0^\infty dt'\, P'_\mathscr {W}(t') \frac{t^{\prime k}}{k!}e^{-t'} = \gamma _n .\nonumber \\ \end{aligned}$$
(B14)

The completeness relation [37]

$$\begin{aligned} \sum _{n=0}^\infty L_n(t)L_n(t') = e^{(t+t')/2}{\cdot }\delta (t-t') , \end{aligned}$$
(B15)

\(\delta (t)\) being the Dirac delta function, implies the convergent Laguerre-series representation

$$\begin{aligned} P'_\mathscr {W}(t') = \sum _{n=0}^\infty \gamma _n L_n(t') , \end{aligned}$$
(B16)

and we conclude, via (B11), that

$$\begin{aligned} P_\mathscr {W}(t)dt = r_{\text {lo}}dt{\cdot }\int _\Gamma \frac{dz}{2\pi i}\, g_{\text {lo}}(z) e^{-r_{\text {lo}}t(z-1)} . \end{aligned}$$
(B17)

The Bromwich contour \(\Gamma \), with \(\Re z > 1\), may now be deformed as \(\Gamma \mapsto \mathcal {C}_{\text {pol}} \cup \mathcal {C}_{\text {cut}}\) so that it wraps around the pole and cut of \(g_{\text {lo}}(z)\). This serves to reproduce (130).

The convergence claim for (B16) follows from the theorem that the formal expansion

$$\begin{aligned} \gamma (t) \equiv \sum _{k=0}^\infty \gamma _k L_k(t) \end{aligned}$$
(B18)

converges in \(L_2\) if and only if \(\Vert \gamma \Vert ^2_{L_2} < \infty \), where

$$\begin{aligned} \Vert \gamma \Vert ^2_{L_2} \equiv \int _0^\infty dt\, e^{-t}|\gamma (t)|^2 = \sum _{k=0}^\infty |\gamma _k|^2 . \end{aligned}$$
(B19)

In the present application, we have \(\gamma (t) = P'_{\mathscr {W}}(t)\) for which, trivially,

$$\begin{aligned} \Vert P'_\mathscr {W}\Vert _{L_2}^2 = \int _0^\infty dt\, e^{-t}\left[ P'_\mathscr {W}(t)\right] ^2 < \int _0^\infty dt\, e^{-t} = 1 . \end{aligned}$$
(B20)

One should note that, while the coefficients \(\gamma _n\) of the Laguerre series (B16) are constructed as (potentially) numerically problematic alternating combinatorial sums, the last equality in (B8) shows that they can be efficiently computed by means of the very same iterative quadrature method derived for the queue-length probabilities \(p_n\). Explicitly,

$$\begin{aligned} \begin{aligned} \gamma _n&= \Theta (r^2 - r_{\text {hi}}) \left[ 1 - \frac{r(1-r)}{r_{\text {lo}}}\right] {\cdot }\frac{(1-r)^{n+1}}{r} \\&\quad {}+ \frac{1-r}{2\pi r}\int _0^1 du\,\sqrt{u(1-u)}{\cdot } \frac{(u+c)^n}{(u + a)^{n+1}(u + b)} , \end{aligned} \end{aligned}$$
(B21)

where \(c \equiv (x_- - 1)/x_{\text {dif}} = (1-r)a + rb\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuk, J., Kirszenblat, D. Analytic approach to the non-pre-emptive Markovian priority queue. Queueing Syst 107, 159–198 (2024). https://doi.org/10.1007/s11134-024-09912-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-024-09912-3

Keywords

Mathematics Subject Classification

JEL Classification

Navigation