Log in

Degradation of organic dyes in water by electrical discharges

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The degradation of several organic compounds in aqueous solution: methyl yellow (C14H15N3), methyl red (C15H15N3O2), methyl orange (C14H14N3NaO3S), phenol red (C19H14O5S) and methylene blue (C16H18ClN3S), was investigated in a pulsed corona discharge. High voltage pulses of 17 kV amplitude, 24 ns rise time and approximately 200 ns duration (full width at half maximum––FWHM) were applied to an array of six hollow needles. When oxygen was bubbled into the solution through the needle, current pulses of 90 A amplitude were obtained and the average power dissipated in the discharge was 19 W at 100 Hz pulse repetition rate. UV-visible spectra of the aqueous solutions show a significant reduction of the absorbance in the visible range, up to 90%, after plasma treatment, suggesting fragmentation of the compounds. Several aliphatic compounds were identified as oxidation products of methyl yellow, methyl red and methyl orange. For methylene blue and phenol red aromatic reaction products were detected as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1–14

    Article  Google Scholar 

  2. Hoeben WFLM (2000) Pulsed corona-induced degradation of organic materials in water, Ph.D. Thesis, Technical University of Eindhoven, The Netherlands

  3. Atkinson R, Carter WPL (1984) Chem Rev 84:437–470

    Article  Google Scholar 

  4. Martin CA, Alfano OM, Cassano AE (2000) Cat Today 60:119–127

    Article  Google Scholar 

  5. Fallmann H, Krutzler T, Bauer R, Malato S, Blanco J (1999) Cat Today 54:309–319

    Article  Google Scholar 

  6. Bianco Prevot A, Vincenti M, Bianciotto A, Pramauro E (1999) Appl Cat B Environ 22:149–158

    Article  Google Scholar 

  7. Assabane A, Ichou YA, Tahiri H, Guillard C, Herrmann JM (2000) Appl Cat B Environ 24:71–87

    Article  Google Scholar 

  8. Makino K, Mossoba M, Riesz P (1983) J Phys Chem 87:1369–1377

    Article  Google Scholar 

  9. Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Kroesen GMW (1999) J Phys D Appl Phys 32:L133–L137

    Article  ADS  Google Scholar 

  10. Hayashi D, Hoeben W, Dooms G, van Veldhuizen E, Rutgers W, Kroesen G (2001) Applied Optics 40:986–993

    Article  ADS  Google Scholar 

  11. Appleton AT, Lukes P, Finney WC, Locke BR (2002) Proceedings of HAKONE VIII, Puhajarve, Estonia, pp 313–317

  12. Sahni M, Finney WC, Clark RJ, Locke BR (2002) Proceedings of HAKONE VIII, Puhajarve, Estonia, July 21–25, pp 374–378

  13. Malik MA, Rehman U, Ghaffar A, Ahmed K (2002) Plasma Sources Sci Technol 11:236–240

    Article  ADS  Google Scholar 

  14. Malik MA (2003) Plasma Sources Sci Technol 12:S26–S32

    Article  Google Scholar 

  15. Sunka P, Babicky V, Clupek M, Lukes P, Balcarova J (2003) Proceedings of 14th IEEE international pulsed power conference, Dallas, Texas, US, pp 229–231

  16. Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Cramers CAMG, Kroesen GMW (2000) Plasma Sources Sci Technol 9:361–369

    Article  ADS  Google Scholar 

  17. Lukes P, Locke BR (2005) J Phys D Appl Phys 38:4074–4081

    Article  ADS  Google Scholar 

  18. Hayashi D, Hoeben WFLM, Dooms G, van Veldhuizen EM, Rutgers WR, Kroesen GMW (2000) J Phys D Appl Phys 33:2769–2774

    Article  ADS  Google Scholar 

  19. Lukes P, Appleton AT, Locke BR (2004) IEEE Trans Ind Appl 40:60–67

    Article  Google Scholar 

  20. Lukes P, Clupek M, Babicky V, Janda V, Sunka P (2005) J Phys D Appl Phys 38:409–416

    Article  ADS  Google Scholar 

  21. Malik MA, Ghaffar A, Malik SA (2001) Plasma Sources Sci Technol 10:82–91

    Article  ADS  Google Scholar 

  22. Hibert C, Garand I, Motret O, Pouvesle JM (1999) J Appl Phys 85:7070–7075

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support from the Swiss National Science Foundation (“SCOPES” program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Magureanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magureanu, M., Mandache, N.B. & Parvulescu, V.I. Degradation of organic dyes in water by electrical discharges. Plasma Chem Plasma Process 27, 589–598 (2007). https://doi.org/10.1007/s11090-007-9087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9087-x

Keywords

Navigation