Log in

Destruction Kinetics of 2,4 Dichlorophenol Aqueous Solutions in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The processes of degradation of 2,4-dichlorophenol (2,4-DCP) aqueous solutions under the action of atmospheric pressure of DBD in oxygen were studied. The degradation of 2,4-DCP proceeds efficiently, the degree of decomposition reaching 100%. The degradation kinetics of 2,4-DCP obeys a formal first-order kinetic law on concentration of 2,4-DCP. The effective rate constants depend weakly on the experimental conditions and are equal to ~ 2 s−1. Based on experimental data, the energy efficiency of 2,4-DCP decomposition was determined to be in the range of 0.039–0.173 molecules per 100 eV depending on the experimental conditions. The composition of the products was studied by gas chromatography, chromatography-mass spectrometry, UV/visible spectroscopy, fluorescent methods and some chemical methods. The main decomposition products present in the solution were found to be carboxylic acids, aldehydes and chloride ions, whereas carbon dioxide and molecular chlorine appear in the gas. The results obtained are compared with similar data from other advanced oxidation processes (AOP’s) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Tatarova E, Bundaleska N, Sarrette JPh, Ferreira CM (2014) Plasmas for environmental issues: from hydrogen production to 2D materials assembly. Plasma Sources Sci Technol 23(6):063002

    Article  CAS  Google Scholar 

  2. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Ing J 236:348–368

    CAS  Google Scholar 

  3. Locke BR, Mededovic Thagard SM (2012) Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chem Plasma Process 32(5):875–917

    Article  CAS  Google Scholar 

  4. Vanraes P, Nikiforov AYu, Leys C (2016) Electrical discharge in water treatment technology for micropollutant decomposition chapter 16 in book. Plasma Sci Technol Prog Phys States Chem React doi: http://dx.doi.org/10.5772/61830

  5. Li S, Huang Y, Wang F, Liu J, Feng F, Shen X, Zheng Q, Liu Z, Wang L, Yan K (2014) Fundamentals and environmental applications of non-thermal plasmas: multi-pollutants emission Control from coal-fired flue gas. Plasma Chem Plasma Process 34(3):579–603

    Article  CAS  Google Scholar 

  6. Mu R, Liu Y, Li R, Xue S, Ognier S (2016) Remediation of pyrene-contaminated soil by active species generated from flat-plate dielectric barrier discharge. Chem Eng J 226:356–365

    Article  Google Scholar 

  7. Ognier S, Rojo J, Liu Y, Duten X, Cavadias S, Thannberger L (2014) Mechanisms of pyrene degradation during soil treatment in a dielectric barrier discharge reactor. Plasma Process Polym 11:734–744

    Article  CAS  Google Scholar 

  8. Aggelopoulos CA, Gkelios A, Klapa MI, Kaltsonoudis C, Svarnas P, Tsakiroglou CD (2016) Parametric analysis of the operation of a non-thermal plasma reactor for the remediation of NAPL-polluted soils. Chem Eng J 301:353–361

    Article  CAS  Google Scholar 

  9. Misra NN (2015) The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol 45(2):229–244

    Article  CAS  Google Scholar 

  10. Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47(4):219–256

    Article  CAS  Google Scholar 

  11. Lu N, Li J, Wang X, Wang T, Wu Y (2012) Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration. Plasma Chem Plasma Process 32(1):109–121

    Article  CAS  Google Scholar 

  12. Qu GZ, Lu N, Li J, Wu Y, Guo-Feng Li GF, Li D (2009) Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma. J Hazard Mater 172(1):472–478

    Article  CAS  Google Scholar 

  13. Du CM, Yan JH, Cheron BG (2007) Degradation of 4-chlorophenol using a gas–liquid gliding arc discharge plasma reactor. Plasma Chem Plasma Process 27(2):635–646

    Article  CAS  Google Scholar 

  14. Hao XL, Zhou MH, Zhang Y, Lei LC (2006) Enhanced degradation of organic pollutant 4-chlorophenol in water by non-thermal plasma process with TiO2. Plasma Chem Plasma Process 26(4):455–468

    Article  CAS  Google Scholar 

  15. Yang H, Caixia, Tezuka M (2013) Plasma-induced decomposition of dichlorophenols and trichlorophenols in water by means of anodic contact glow discharge electrolysis. Plasma Chem Plasma Process 33(6):1043–1052

    Article  CAS  Google Scholar 

  16. Grinevich VI, Kvitkova EY, Plastinina NA, Rybkin VV (2011) Application of dielectric barrier discharge for waste water purification. Plasma Chem Plasma Process 31(4):573–583

    Article  CAS  Google Scholar 

  17. Bubnov AG, Burova EY, Grinevich VI, Rybkin VV, Kim JK, Choi HS (2006) Plasma-catalytic decomposition of phenols in atmospheric pressure dielectric barrier discharge. Plasma Chem Plasma Process 26(1):19–30

    Article  CAS  Google Scholar 

  18. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York, p 37

    Google Scholar 

  19. Lurie YY (1984) Analytical chemistry of industrial waste waters. Khimiya, Moscow (in Russian)

    Google Scholar 

  20. Hillebrand WF, Lundell GEF (1953) Applied inorganic analysis, 2nd edn. Wiley, New-York

    Google Scholar 

  21. Parkinson WH, Yoshino K, Freeman DE (1988) Absolute absorption cross section measurements of ozone and the temperature dependence at four reference wavelengths leading to renormalization of the cross section between 240 and 350 nm. Smithsonian Institution Astrophysical Observatory, MA, p 02138

    Google Scholar 

  22. Reid RC (1987) The properties of gases and liquids. McGraw Hill, New York

    Google Scholar 

  23. Bobkova ES, YaV Khodor, Kornilova ON, Rybkin VV (2014) Chemical composition of plasma of dielectric barrier discharge at atmospheric pressure with a liquid electrode. High Temp 52(4):511–517

    Article  CAS  Google Scholar 

  24. Bobkova ES, Rybkin VV (2015) Peculiarities of energy efficiency comparison of plasma chemical reactors for water purification from organic substances. Plasma Chem Plasma Process 35(1):133–142

    Article  CAS  Google Scholar 

  25. Liu Y, Jiang X (2008) Plasma-induced degradation of chlorobenzene in aqueous solution. Plasma Chem Plasma Process 28(1):15–24

    Article  CAS  Google Scholar 

  26. Kuo WS (1999) Synergistic effects of combination of photolysis and ozonation on destruction of chlorophenols in water. Chemosphere 39(11):1853–1860

    Article  CAS  Google Scholar 

  27. Benítez FJ, Beltrán-Heredia J, Acero JL, Rubio FJ (2001) Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals. J Chem Technol Biotechnol 76(3):312–320

    Article  Google Scholar 

  28. Tang WZ, Huang CP (1996) Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton’s reagent. Chemosphere 33(8):1621–1635

    Article  CAS  Google Scholar 

  29. Benítez FJ, Beltrán-Heredia J, Acero JL, Rubio FJ (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation techniques. Chemosphere 41(8):1271–1277

    Article  Google Scholar 

  30. http://webbook.nist.gov/cgi/cbook.cgi?ID=C106514&Mask=400#Refs

  31. Bubnov AG, Burova EYu, Grinevich VI, Rybkin VV, Kim J-K, Choi H-S (2007) Comparative actions of NiO and TiO2 catalysts on the destruction of phenol and its derivatives in a dielectric barrier discharge. Plasma Chem Plasma Process 27(2):177–187

    Article  CAS  Google Scholar 

  32. Bobkova ES, Krasnov DS, Sungurova AV, Rybkin VV, Choi H-S (2016) Phenol decomposition in water cathode of DC atmospheric pressure discharge in air. Korean J Chem Eng 33(5):1620–1628

    Article  CAS  Google Scholar 

  33. Bobkova ES, Isakina AA, Grinevich VI, Rybkin VV (2012) Decomposition of aqueous solution of acetic acid under the action of atmospheric pressure dielectric barrier discharge in oxygen. Russ J Appl Chem 85(1):71–75

    Article  CAS  Google Scholar 

  34. Bobkova ES, Grinevich VI, Kvitkova EYu, Rybkin VV (2011) Destruction of formaldehyde and acetone dissolved in water in atmospheric pressure barrier discharge in oxygen. Izv Vyssh Uchebn Zaved, Khim Khim Tekhnol 54(8):55–58

    CAS  Google Scholar 

  35. Thomas JK (1965) Rates of reaction of the hydroxyl radicals. Trans Faraday Soc 61:702–707

    Article  CAS  Google Scholar 

  36. Shutov DA, Sungurova AV, Choukourov A, Rybkin VV (2016) Kinetics and mechanism of Cr(VI) reduction in a water cathode induced by atmospheric pressure DC discharge in air. Plasma Chem Plasma Process 36(5):1253–1269

    Article  CAS  Google Scholar 

  37. Shibata T, Nishiyama H (2014) Acetic acid decomposition in a coaxial dielectric barrier discharge tube with mist flow. Plasma Chem Plasma Process 34(6):1331–1343

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out in the frame of Project part of State Assignment of the Ministry of Education and Science of the RF, No. 3.1371.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Rybkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchin, A.A., Grinevich, V.I., Shulyk, V.Y. et al. Destruction Kinetics of 2,4 Dichlorophenol Aqueous Solutions in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen. Plasma Chem Plasma Process 38, 123–134 (2018). https://doi.org/10.1007/s11090-017-9857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9857-z

Keywords

Navigation