Log in

Modulation on electronic do** of graphene nanoribbons using alkali and oxygen atoms adsorption

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Adopting the first-principles calculation method based on density functional theory, we investigate the electronic and optical properties of alkali atoms (Li, Na and K) and oxygen (O) atoms adsorption of doped graphene nanoribbons. We further inspected the differential charge density, energy band structure, partial state density, electron energy loss spectrum, as well as the valence electron state of impurity atoms. The results revealed the significant effect of Li, Na and K atoms on the graphene nanoribbons, presenting n-type direct band gap degenerate semiconductors with the band gap values of 0.438, 0.529 and 0.494 eV, respectively. An increase in the adsorption of O in turn changed the materials into p-type direct band gap degenerate semiconductors with the band gap values of 0.573, 1.011 and 0.967 eV, respectively. Partial charge density demonstrated a charge migration between the atoms, resulting in a certain change in the electronic properties of the materials. Additionally, the hybridization and local effects of the adsorbed atoms and C atoms resulted in the promotion of the electronic properties near the Fermi level to be significantly modulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Chauhan, S.S., Ferwani, S., Srivasatava, P.: The electronic and transport properties of Li-doped graphene nanoribbons: an ab-initio approach. Pramana 93(3), 1–7 (2019)

    Google Scholar 

  • Cui, X.Q., Liu, Q., Fan, Z.Q., et al.: Regulation of spin transport properties of monoanthracene molecular devices by oxygen molecular adsorption. Acta Physica Sin. 69(24), 313–319 (2020)

    Google Scholar 

  • Demchenko, D.O., Tallapally, V., Esteves, R.J.A., et al.: Optical transitions and excitonic properties of Ge1x Snx alloy quantum dots. J. Phys. Chem. C 121, 18299-18306 (2017)

    Article  CAS  Google Scholar 

  • Fotoohi, S., Pashangpour, M., Lashgari, H.: Design of electromechanical switch based on armchair twisted graphene nanoribbons with do** and defect. Physica B Condens. Matter 569, 48–56 (2019)

    Article  ADS  CAS  Google Scholar 

  • Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Giannozzi, P., Baroni, S., Bonini, N., et al.: Quantum-espresso. Condens. Matter 21, 395502–395521 (2009)

    Article  Google Scholar 

  • Hamann, D.R.: Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117(1-10) (2013)

    Article  ADS  Google Scholar 

  • Huang, C.C., Pu, N.W., Wang, C.A., et al.: Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique. Separ. Purif. Technol. 82, 210–215 (2011)

    Article  CAS  Google Scholar 

  • Kinloch, I.A., Suhr, J., Lou, J., et al.: Composites with carbon nanotubes and graphene. An outlook. Science 362(6414), 547–553 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kumar, M.R., Singh, S.: Na adsorption on para boron-doped AGNR for sodium-ion batteries (SIBs): a first principles analysis. J. Electron. Mater. 51(5), 2095–2106 (2022)

    Article  ADS  CAS  Google Scholar 

  • Li, C., **e, Z., Chen, Z., Cheng, N., Wang, J., Zhu, G.: Tunable bandgap and optical properties of black phosphorene nanotubes. Materials 11, 304(1-16) (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Ding J., Wang, Q.Q., et al.: Research progress on the biomedical uses of graphene and its derivatives. New Carbon Mater. 36(4), 779-793 (2021)

  • Ma, Y., Li, D., Zhang, H., et al.: First-principles study of the electronic structure and transport properties of armchair graphene nanoribbons with adsorbed super-halogen LiF2 and super-alkali Li3 clusters. Phys. Lett. A 384(24), 126569(1-7) (2020)

    Article  CAS  Google Scholar 

  • Meng, C., Zhao, K., Yang, M., et al.: Enhanced SOx sensing performance of BC3 nanosheets functionalized with Na atoms: a first-principles study. Physica E 132, 114762(1-8) (2021)

    Article  CAS  Google Scholar 

  • Narin, P., All Abbas, J.M., Atmaca, G., et al.: Ab initio study of electronic properties of armchair graphene nanoribbons passivated with heavy metal elements. Solid State Commun. 296, 8–11 (2019)

    Article  ADS  CAS  Google Scholar 

  • Notash, S., Fotoohi, S.: Spin polarized electronic and optical properties of vacancy defects in armchair phosphorene nanoribbons. Mater. Res. Express 6, 116312(1-15) (2019) 

    Article  ADS  CAS  Google Scholar 

  • Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671-6687 (1992)

    Article  ADS  CAS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rezania, H., Azizi, F.: Transverse spin susceptibilities of doped armchair grapheme nanoribbon due to electron-phonon interaction. Solid State Commun. 298, 113638(1-9) (2019)

    Article  Google Scholar 

  • Ri, N.C., Wi, J.H., Kim, N.H., et al.: First principles study on the structural, electronic, and transport properties of the Armchair Graphane, fluorographene, fluorographane/graphene heterostructure nanoribbons terminated by H and F atoms. Physica E 108, 226–232 (2019)

    Article  ADS  CAS  Google Scholar 

  • Sheng, K., Yuan, H.K., Chen, H., et al.: Adsorption of single alkali-metal atoms (Li, Na, K) over the edge-passivated zigzag blue phosphorene nanoribbons. J. Phys. Chem. Solids 146, 109623(1-10) (2020)

    Article  CAS  Google Scholar 

  • Tallapally, V., Nakagawara, T.A., Demchenko, D.O., et al.: Ge1−x Snx alloy quantum dots with composition-tunable energy gaps and near-infrared photoluminescence. Nanoscale 10, 20296-22305 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Wang, W.H., Zhao, C.L., Li, P.F., et al.: Tuning the energy band structures and optical properties of armchair graphene nanoribbons using oxygen adsorption. J. Electron. Mater. 49, 3677–3683 (2020)

    Article  ADS  CAS  Google Scholar 

  • Wu, C.W., Ren, X., Wu, X., et al.: Theoretical study on anisotropy and ultra-low thermal conductivity of porous graphene nanoribbons. Acta Physica Sin. 71(02), 314–320 (2022)

    Google Scholar 

  • Yang, B., Li, D.B., Qi, L., et al.: Thermal properties of triangle nitrogen-doped graphene nanoribbons. Phys. Lett. A 383(12), 1306–1311 (2019)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China No. 11964026 and Natural Science Foundation of Inner Mongolia No. 2023LHMS01014, No. 2016BS0107, No. 2019MS01010 and No. 2019MS06017. It is also supported by Higher Educational Scientific Research Projects of Inner Mongolia No. NJZZ22470 and No. NJZZ19145 and Inner Mongolia University for Nationalities Research Fund Project No. NMDYB20040. It is also supported by the Inner Mongolia Autonomous Region Youth Capacity Improvement Project No. GXKY22157.

Author information

Authors and Affiliations

Authors

Contributions

Weihua Wang designed research; Jiaxu Zhou, Yuxuan Wang, Jie Luo and Mopei Wang performed research; Weihua Wang and Yuxuan Wang analyzed data; Weihua Wang,Jiaxu Zhou, Jie Luo and Mopei Wang wrote the paper.

Corresponding author

Correspondence to Weihua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, Y., Zhou, J. et al. Modulation on electronic do** of graphene nanoribbons using alkali and oxygen atoms adsorption. Opt Quant Electron 56, 437 (2024). https://doi.org/10.1007/s11082-023-05937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05937-9

Keywords

Navigation