Log in

Tuning the Energy Band Structures and Optical Properties of Armchair Graphene Nanoribbons Using Oxygen Adsorption

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic properties and optical properties of bare and H-terminated armchair graphene nanoribbons (AGNRs), with adsorption of single and double oxygen atoms, are investigated using density functional theory. Our results suggest that the number of adsorbed atoms and modification of atomic edge configuration cause an indirect-to-direct band gap and a metal-to-semiconductor transition. In addition, our results demonstrate that a change in the number of adsorbed atoms leads to N-semiconductor-to-P-semiconductor transition in H-terminated AGNRs. Single oxygen atom adsorption on the bare AGNRs results in an indirect-band-gap semiconductor with an energy gap of 0.212 eV. The band structures near the Fermi level are mainly dominated by C-2s, 2p and O-2s, 2p electronic states, which are strongly hybridized in the conduction and valence bands. We also find that H-terminated AGNRs with single O adsorption and double O adsorption become n-type and p-type semiconductors, respectively. By increasing adsorption of O atoms and modifying the edge H atoms, the peaks of the optical absorption tend to be redshifted. Furthermore, the number of peaks is reduced as edge H atom concentration is modified, for the same number of adsorbed atoms. Electron energy loss spectroscopy (EELS) is redshifted for single and double O atoms adsorbed on bare and H-terminated AGNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. X.B. Li, S.Y. **e, H. Zheng, W.Q. Tian, and H.B. Sun, Nanoscale 7, 18863 (2015).

    Article  CAS  Google Scholar 

  3. K.K. Jha, N. Tyagi, N.K. Jaiswal, and P. Strivastava, Phys. Lett. A 383, 125949 (2019).

    Article  CAS  Google Scholar 

  4. G. Seol and J. Guo, Appl. Phys. Lett. 98, 143107 (2011).

    Article  Google Scholar 

  5. Q.M. Yan, B. Huang, J. Yu, F.W. Zheng, J. Zang, J. Wu, B.L. Gu, F. Liu, and W.H. Duan, Nano Lett. 7, 1459 (2007).

    Article  Google Scholar 

  6. A. Fathalian, J. Jalilian, and S. Shahidi, Phys. B 417, 75 (2013).

    Article  CAS  Google Scholar 

  7. A. Ramasubramaniam, Phys. Rev. B 81, 245413 (2010).

    Article  Google Scholar 

  8. P. Narin, J.M. All Abbas, G. Atmaca, E. Kutlu, S.B. Lisesivdin, and E. Ozbay, Solid States Commun. 296, 8 (2019).

    Article  CAS  Google Scholar 

  9. N.C. Ri, J.H. Wi, N.H. Kim, and S.I. Ri, Phys. E 108, 226 (2019).

    Article  CAS  Google Scholar 

  10. T. Guerra, L. Leite, S. Azevedo, and L. Bernardo, Superlattices Microstruct. 104, 532 (2017).

    Article  CAS  Google Scholar 

  11. V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. Özgür, and I.U. Arachchige, Nanoscale 10, 20296 (2018).

    Article  CAS  Google Scholar 

  12. D.O. Demchenko, V. Tallapally, R.J.A. Esteves, S. Hafiz, T.A. Nakagawara, I.U. Arachchige, and Ü. Özgür, J. Phys. Chem. C 121, 18299 (2017).

    Article  CAS  Google Scholar 

  13. Y.J. Ding, J.Q. Zhu, S.S. Wang, M.L. Yang, S. Yang, L. Yang, X. Zhao, F. Xu, Z.J. Wang, and Y.B. Li, J. Colloid Interface Sci. 552, 196 (2019).

    Article  CAS  Google Scholar 

  14. N.T. Tien, P.T.B. Thao, V.T. Phuc, and R. Ahuja, Phys. E 114, 113572 (2019).

    Article  Google Scholar 

  15. N.C. Ri, J.-H. Wi, C.-H. Kim, J.-C. Kim, and S.-I. Ri, Chem. Phys. Lett. 734, 136698 (2019).

    Article  CAS  Google Scholar 

  16. W. Niu, J. Liu, Y. Mai, K. Müllen, and X. Feng, Trends Chem. 1, 549 (2019).

    Article  Google Scholar 

  17. N. Al-Aqtash, K.M. Al-Tarawneh, T. Tawalbeh, and I. Vasiliev, J. Appl. Phys. 112, 034304 (2012).

    Article  Google Scholar 

  18. O. Leenaerts, B. Partoens, and F.M. Peeters, Phys. Rev. B 77, 125416 (2008).

    Article  Google Scholar 

  19. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Carr, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  20. W. Wang and G. Zhao, Solid States Commun. 166, 6 (2013).

    Article  CAS  Google Scholar 

  21. J.Y. Dai and J.M. Yuan, J. Phys. Condens. Matter 22, 225501 (2010).

    Article  Google Scholar 

  22. J.Y. Dai, J.M. Yuan, and P. Giannozzi, Appl. Phys. Lett. 95, 232105 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of Inner Mongolia No. 2016BS0107, National Natural Science Foundation of China No. 11464034 and Scientific Research Project of Inner Mongolia University for Nationalities No. NMDYB1755. It is also supported by National Natural Science Foundation of China No. 11964026, Natural Science Foundation of Inner Mongolia No. 2019MS01010 and Higher Educational Scientific Research Projects of Inner Mongolia No. NJZZ19145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, C., Li, P. et al. Tuning the Energy Band Structures and Optical Properties of Armchair Graphene Nanoribbons Using Oxygen Adsorption. J. Electron. Mater. 49, 3677–3683 (2020). https://doi.org/10.1007/s11664-020-08074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08074-1

Keywords

Navigation