Log in

On zero behavior of higher-order Sobolev-type discrete \(q-\)Hermite I orthogonal polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we investigate the sequence of monic q-Hermite I-Sobolev type orthogonal polynomials of higher-order, denoted by \(\{\mathbb {H}_{n}(x;q)\}_{n\ge 0}\), which are orthogonal with respect to the following non-standard inner product involving q-differences:

$$\begin{aligned} \langle p,q\rangle _{\lambda }=\int _{-1}^{1}f\left( x\right) g\left( x\right) (qx,-qx;q)_{\infty }d_{q}(x)+\lambda \,(\mathscr {D}_{q}^{j}f)(\alpha )(\mathscr {D}_{q}^{j}g)(\alpha ), \end{aligned}$$

where \(\lambda \) belongs to the set of positive real numbers, \(\mathscr {D}_{q}^{j}\) denotes the j-th q -discrete analogue of the derivative operator, \(q^j\alpha \in \mathbb {R}\backslash (-1,1)\), and \((qx,-qx;q)_{\infty }d_{q}(x)\) denotes the orthogonality weight with its points of increase in a geometric progression. Connection formulas between these polynomials and standard q-Hermite I polynomials are deduced. The basic hypergeometric representation of \(\mathbb {H}_{n}(x;q)\) is obtained. Moreover, for certain real values of \(\alpha \) satisfying the condition \(q^j\alpha \in \mathbb {R}\backslash (-1,1)\), we present results concerning the location of the zeros of \(\mathbb {H}_{n}(x;q)\) and perform a comprehensive analysis of their asymptotic behavior as the parameter \(\lambda \) tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Supporting Data

Not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Al-Salam, W.A., Carlitz, L.: Some orthogonal \(q\)-polynomials. Math. Nachr. 30, 47–61 (1965)

    Article  MathSciNet  Google Scholar 

  2. Arvesú, J., Soria-Lorente, A.: First-order non-homogeneous \(q\)-difference equation for Stieltjes function characterizing \(q\)-orthogonal polynomials. J. Difference Equ. Appl. 19(5), 814–838 (2013)

    Article  MathSciNet  Google Scholar 

  3. Askey, R.A., Atakishiyev, N.M., Suslov, S.K.: An analog of the Fourier transformation for a \(q-\)Harmonic oscillator. In: Gruber, B. (ed.) Symmetries in Science VI, pp. 57–63 (1993)

  4. Askey, R.A., Suslov, S.K.: The \(q-\)Harmonic oscillator and the Al-Salam and Carlitz polynomials. Lett. Math. Phys. 29, 123–132 (1993)

    Article  MathSciNet  Google Scholar 

  5. Atakishiyev, N.M., Suslov, S.K.: Difference analogs of the harmonic oscillator. Theor. Math. Phys. 85, 442–444 (1991)

    Google Scholar 

  6. Atakishiyev, N.M., Suslov, S.K.: Realization of the \(q-\)Harmonic oscillator. Theor. Math. Phys. 87, 1055–1062 (1991)

    MathSciNet  Google Scholar 

  7. Bannai, E.: Orthogonal polynomials in coding theory and algebraic combinatorics. In: Nevai, P. (ed.) Orthogonal Polynomials, Theory and Applications, NATO ASI Series 294, pp. 25–53. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  8. Bracciali, C.F., Dimitrov, D.K., Sri Ranga, A.: Chain sequences and symmetric generalized orthogonal polynomials. J. Comput. Appl. Math. 143, 95–106 (2002)

    Article  MathSciNet  Google Scholar 

  9. Costas-Santos, R.S., Soria-Lorente, A.: Analytic properties of some basic hypergeometric-Sobolev-type orthogonal polynomials. J. Difference Equ. Appl. 24(11), 1715–1733 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ernst, T.: \(q\)-complex numbers, a natural consequence of umbral calculus. Uppsala University Department of Mathematics. Report 44 (2007)

  11. Filipuk, G., Mañas-Mañas, J.F., Moreno-Balcázar, J.J.: Second-order difference equation for Sobolev-type orthogonal polynomials: Part I: theoretical results. J. Difference Equ. Appl. 28(7), 971–989 (2022)

    Article  MathSciNet  Google Scholar 

  12. Filipuk, G., Mañas-Mañas, J.F., Moreno-Balcázar, J.J.: Second-order difference equation for Sobolev-type orthogonal polynomials. Part II: Computational tools. East Asian J. Appl. Math. 13(4), 960–979 (2023)

  13. Hermoso, C., Huertas, E.J., Lastra, A., Soria-Lorente, A.: On second order \(q\)-difference equations satisfied by Al-Salam–Carlitz I-Sobolev type polynomials of higher order. Mathematics 8, 1300 (2020)

    Article  Google Scholar 

  14. Hahn, W.: Über Orthogonalpolynome, die \(q\) -Differenzengleichungen genügen. Math. Nachr. 2, 4–34 (1949)

    Article  MathSciNet  Google Scholar 

  15. Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable. Encyclopedia of Mathematics and its Applications. 98, Cambridge University Press, Cambridge (2005)

  16. Jenkins, M.A., Taub, J.F.: A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math. 14, 252–263 (1970)

    Article  MathSciNet  Google Scholar 

  17. Jenkins, M.A., Traub, J.F.: A three-stage algorithm for real polynomials using quadratic iteration. Numer. Anal. 7, 545–566 (1970)

    Article  MathSciNet  Google Scholar 

  18. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their \(q\)-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin-Heidelberg (2010)

  19. Koornwinder, T.H.: Orthogonal polynomials in connection with quantum groups. In: Nevai, P. (ed.) Orthogonal Polynomials, Theory and Applications, NATO ASI Series 294, pp. 257–292. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  20. Koornwinder, T.H.: Compact quantum groups and \(q\)-special functions. In: Baldoni, V., Picardello, M.A. (eds.) Representations of Lie Groups and Quantum Groups, Longman Scientific & Technical, Pitman Res. Notes 311, Harlow, pp. 46–128. (1994)

  21. López, G., Marcellán, F., Van Assche, W.: Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product. Constr. Approx. 11, 107–137 (1995)

    Article  MathSciNet  Google Scholar 

  22. Macfarlane, A.J.: On \(q\)-analogues of the quantum harmonic oscillator and the quantum group SU(2)\(_{q}\). J. Phys. A: Math. and Gen. 22, 4581–4588 (1989)

    Article  MathSciNet  Google Scholar 

  23. Marcellán, F., Ronveaux, A.: On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Indag. Mathem. (N. S.) 1(4), 451–464 (1990)

  24. Marcellán, F., Xu, Y.: On Sobolev orthogonal polynomials. Expo. Math. 33, 308–352 (2015)

    Article  MathSciNet  Google Scholar 

  25. Meijer, H.G.: Zero distribution of orthogonal polynomials in a certain discrete Sobolev space. J. Math. Anal. Appl. 172, 520–532 (1993)

    Article  MathSciNet  Google Scholar 

  26. Milovanovic, G.V., Cvetković, A.S.: An application of little \(1/q\)-Jacobi polynomials to the summation of certain series. Facta Univ. Ser. Math. Inform. 18, 31–46 (2003)

    MathSciNet  Google Scholar 

  27. Tcheutia, D.D., Jooste, A.S., Koepf, W.: Mixed recurrence equations and interlacing properties for zeros of sequences of classical \(q\)-orthogonal polynomials. Appl. Numer. Math. 125, 86–102 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous referees for carefully reading the manuscript and providing insightful comments, which have been invaluable in improving the quality of the article.

Funding

Open access funding thanks to the CRUE-CSIC agreement with Springer Nature. The work of EJH and AL has been supported by Dirección General de Investigación e Innovación, Consejería de Educación e Investigación of the Comunidad de Madrid (Spain) and Universidad de Alcalá, under grant CM/JIN/2021-014, Proyectos de I+D para Jóvenes Investigadores de la Universidad de Alcalá 2021, and the Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR, under grant TED2021-129813A-I00. The work of AL is also partially supported by the project PID2019-105621GB-I00 of Ministerio de Ciencia e Innovación, Spain. This research was conducted while EJH was visiting the ICMAT (Instituto de Ciencias Matemáticas), from jan-2023 to jan-2024 under the Program Ayudas de Recualificación del Sistema Universitario Español para 2021-2023 (Convocatoria 2022) - R.D. 289/2021 de 20 de abril (BOE de 4 de junio de 2021). This author wish to thank the ICMAT, Universidad de Alcalá, and the Plan de Recuperación, Transformación y Resiliencia (NextGenerationEU) of the Spanish Government for their support. Part of this research was conducted while ASL was visiting the other authors at the Universidad de Alcalá in early 2022, under the “GINER DE LOS RIOS” research program. He wishes to thank the Universidad de Alcalá, and its Departamento de Física y Matemáticas its support. The work of VSL has been supported by Consejería de Economía, Hacienda y Empleo of the Comunidad de Madrid through “Programa Investigo”, funded by the European Union “NextGenerationEU”. EJH, AL and VSL are members of the research group AnFAO (Cod.: CT-CE2023/876) of the Universidad de Alcalá.

Author information

Authors and Affiliations

Authors

Contributions

All authors made significant contributions to this work. EH, AL, and ASL conceptualized the research and designed the study. EH primarily drafted the manuscript, including Sections 1-4 as well as section 7. Furthermore, EH, AL, and ASL outlined most of the analytic properties of the studied sequence. VSL conducted the analysis of Section 5, “Zero location and asymptotic behaviour” while also performed the numerical experiments included in Sections 5 and 6. All authors participated in manuscript review and gave final approval.

Corresponding author

Correspondence to Víctor Soto-Larrosa.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interest

The authors declare not competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huertas, E.J., Lastra, A., Soria-Lorente, A. et al. On zero behavior of higher-order Sobolev-type discrete \(q-\)Hermite I orthogonal polynomials. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01868-y

Keywords

Navigation