Log in

Efficient difference method for time-space fractional diffusion equation with Robin fractional derivative boundary condition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a numerical method is proposed to solve the time-space fractional diffusion equation with Robin fractional derivative boundary condition. Under the weak regularity assumptions of solution, we present a numerical scheme based on the L1 method for time discretization on graded mesh and the Grünwald-Letnikov formula for spatial discretization on uniform mesh. And a fast scheme for the considered problem is constructed based on the exponential summation approximation of the kernel function tα. Meanwhile, a detailed analysis of stability and convergence is given. Then, the extrapolation method is applied to the space direction to make it reach the second-order accuracy. Finally, numerical experiments show that the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giona, M., Roman, H. E.: Fractional diffusion equation for transport phenomenna in random media. Physica A. 185, 87–97 (1992)

    Article  Google Scholar 

  2. Gorenflflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, 521–541 (2002)

    Article  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Baeumer, B., Kovács, M., Meerschaert, M., Sankaranarayanan, H.: Reprint of: Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 339, 414–430 (2018)

    Article  MathSciNet  Google Scholar 

  5. Kelly, J.F., Sankaranarayanan, H., Meerschaert, M.: Boundary conditions for two-sided fractional diffusion. J. Comput. Phys. 376, 1089–1107 (2019)

    Article  MathSciNet  Google Scholar 

  6. Boutiara, A., Benbachir, M., Guerbati, K.: Caputo type fractional differential equation with nonlocal Erdelyi-Kober type integral boundary conditions in Banach spaces. Sur. Math. Appl. 15, 399–418 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., Christopher, T., Labolle, E., Neupauer, R., Sun, H.: Bounded fractional diffusion in geological media: Definition and Lagrangian approximation. Water Resour. Res. 52, 8561–8577 (2016)

    Article  Google Scholar 

  8. Guo, B., Xu, Q., Yin, Z.: Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions. Appl. Math. Mech. 37, 403–416 (2016)

    Article  MathSciNet  Google Scholar 

  9. Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359–369 (2015)

    Article  MathSciNet  Google Scholar 

  10. Liu, T., Hou, M.: Finite difference approximation for one-dimensional Riesz fractional diffusion equation with fractional boundary condition, vol. 55 (2018)

  11. **e, C., Fang, S.: A second-order finite difference method for fractional diffusion equation with Dirichlet and fractional boundary conditions. Numer. Methods Partial Differ. Equ. 35(4), 1383–1395 (2019)

    Article  MathSciNet  Google Scholar 

  12. **e, C., Fang, S.: Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions. Math. Methods Appl. Sci. 43, 3473–3487 (2020)

    Article  MathSciNet  Google Scholar 

  13. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  14. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  15. Gao, G, Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  16. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  17. Stynes, M., \(O^{\prime }\)Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

  18. Huang, C., Liu, X., Meng, X., Stynes, M.: Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. Comput. Meth. Appl. Math. 20(4), 815–825 (2020)

    Article  MathSciNet  Google Scholar 

  19. Shen, J., Sun, Z., Du, R.: Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time. East Asian J. Appl. Math. 8(4), 834–858 (2018)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liao, H., Li, D., Zhang, J., Zhao, Y.: Sharp error estimate of nonuniform L1 formula for time-fractional reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  22. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. Comput. Appl. Math. 316, 614–631 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  24. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon Breach, Yverdon (1993)

    MATH  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Nos. 12071403, 11601460), and the Project of Scientific Research Fund of Hunan Provincial Science and Technology Department of China (No. 2018WK4006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo **ao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The proof of the inequality (46)

Appendix A: The proof of the inequality (46)

Proof

It is proved by induction. When n = 1, it follows from (45) that

$$ ||e^{1}||_{\infty}\leq\frac{1}{\sum\limits_{l=1}^{m}\xi_{1,1}^{l}}|\bar{R}_{i_{0}}^{1}|. $$
(67)

So, the inequality (46) holds for n = 1. Suppose that it holds for jn − 1. Next, we prove it is also holds for j = n. By (45), we have

$$ \small \begin{array}{ll} ||e^{n}||_{\infty}&\leq\frac{1}{\sum\limits_{l=1}^{m}\xi_{n,n}^{l}}\left[\sum\limits_{l=1}^{m}\frac{a_{l}}{{\varGamma}(1-\alpha_{l})}\sum\limits_{k=1}^{n-1}(c_{n,k+1}^{l}-c_{n,k}^{l})||e^{k}||_{\infty} +\sum\limits_{l=1}^{m}\xi_{n,1}^{l}\frac{|\bar{R}_{i_{0}}^{n}|}{\sum\limits_{l=1}^{m}\xi_{n,1}^{l}}\right]\\ &\leq\frac{1}{\sum\limits_{l=1}^{m}\xi_{n,n}^{l}}\left[\sum\limits_{l=1}^{m}\frac{a_{l}}{{\varGamma}(1-\alpha_{l})}\sum\limits_{k=1}^{n-1}(c_{n,k+1}^{l}-c_{n,k}^{l})\max\limits_{1\leq a\leq k}\frac{|\bar{R}_{i_{0}}^{a}|}{\sum\limits_{l=1}^{m}\xi_{a,1}^{l}}+\sum\limits_{l=1}^{m}\xi_{n,1}^{l}\frac{|\bar{R}_{i_{0}}^{n}|}{\sum\limits_{l=1}^{m}\xi_{n,1}^{l}}\right]\\ &\leq\frac{1}{\sum\limits_{l=1}^{m}\xi_{n,n}^{l}}\left[\sum\limits_{l=1}^{m}\frac{a_{l}}{{\varGamma}(1-\alpha_{l})}\sum\limits_{k=1}^{n-1}(c_{n,k+1}^{l}-c_{n,k}^{l})\max\limits_{1\leq a\leq n}\frac{|\bar{R}_{i_{0}}^{a}|}{\sum\limits_{l=1}^{m}\xi_{a,1}^{l}}+\sum\limits_{l=1}^{m}\xi_{n,1}^{l}\frac{|\bar{R}_{i_{0}}^{n}|}{\sum\limits_{l=1}^{m}\xi_{n,1}^{l}}\right]. \end{array} $$
(68)

Thus, it is available that

$$ \begin{array}{ll} ||e^{n}||_{\infty}&\leq\frac{1}{\sum\limits_{l=1}^{m}\xi_{n,n}^{l}}\left[\sum\limits_{l=1}^{m}\frac{a_{l}}{{\varGamma}(1-\alpha_{l})}\sum\limits_{k=1}^{n-1}(c_{n,k+1}^{l}-c_{n,k}^{l})+\sum\limits_{l=1}^{m}\xi_{n,1}^{l}\right] \underset{1\leq k\leq n}{\max}\frac{|\bar{R}_{i_{0}}^{k}|}{\sum\limits_{l=1}^{m}\xi_{k,1}^{l}}\\ &\leq\frac{1}{\sum\limits_{l=1}^{m}\xi_{n,n}^{l}}\left[\sum\limits_{l=1}^{m}\frac{a_{l}}{{\varGamma}(1-\alpha_{l})}\left( \sum\limits_{k=1}^{n-1}(c_{n,k+1}^{l}-c_{n,k}^{l})+c_{n,1}^{l}\right)\right]\underset{1\leq k\leq n}{\max}\frac{|\bar{R}_{i_{0}}^{k}|}{\sum\limits_{l=1}^{m}\xi_{k,1}^{l}}\\ &\leq\underset{1\leq k\leq n}{\max}\frac{|\bar{R}_{i_{0}}^{k}|}{\sum\limits_{l=1}^{m}\xi_{k,1}^{l}}. \end{array} $$
(69)

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Bu, W. & **ao, A. Efficient difference method for time-space fractional diffusion equation with Robin fractional derivative boundary condition. Numer Algor 88, 1965–1988 (2021). https://doi.org/10.1007/s11075-021-01102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01102-z

Keywords

Navigation